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Abstract

A k-coreCk of a treeT is subtree with exactlyk leaves fork � nl , wherenl the number of leaves inT , and minimizes
the sum of the distances of all nodes fromCk . In this paper first we propose a distributed algorithm for constructing a ro
spanning tree of a dynamic graph such that root of the tree is located near the center of the graph. Then we provide a
algorithm for findingk-core of that spanning tree. The spanning tree is constructed in two stages. In the first stage, a
trees is generated. In the next stage these trees are connected to form a single rooted tree. An interesting aspect of th
of proposed spanning algorithm is that it implicitly constructs the (convex) hull of those nodes which are not already i
in the spanning forest. The process is repeated till all non root nodes of the graph have chosen a unique parent. We im
the algorithms for finding spanning tree and itsk-core. A core can be quite useful for routing messages in a dynamic ne
consisting of a set of mobile devices.
 2003 Elsevier B.V. All rights reserved.
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Consider a dynamic graph where nodes app
and disappear with time also the nodes move ab
changing connectivity at random. Such a situat
can be witnessed in a network of autonomous mo
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graph of this kind finding a rooted spanning tree its
can be challenging. In this paper first we propos
distributed algorithm for finding a rooted spanning tr
with the root located being located towards the cen
of the graph. The algorithm works in two stages. In
first stage it finds a spanning forest. In the second s
the trees of the spanning forest are connected toge
to produce a tree with a single root. After we are a
to obtain a spanning tree, ak-core can be constructe
easily following the results from [2].

The paper is organized as follows. Section 2 de
with the problem definition and theoretical prelimina

.



188 S. Srivastava, R.K. Ghosh / Information Processing Letters 88 (2003) 187–194

ies regarding the concept of thek-tree core of a tree.
The distributed algorithms concerning finding a rooted
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of the treeT . We also note that thek-tree core of a tree
need not be unique.
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spanning tree of a dynamic network are provided
Section 3. Section 4 is concerned with the propo
distributed algorithm fork-core along with its correct
ness issues. Section 5 deals with incremental ma
nance ofk-core as the network changes dynamica
Section 6 presents the results of experiments and
tion 7 concludes the paper.

2. Problem definition

The distributedk-tree core algorithm involves tw
broad steps, namely, finding a spanning tree
then determining ak-tree core of that tree. In tw
subsequent sections, we discuss the two issue
detail. For the sake of completeness, in this sect
we present the formal problem definition.

Given a treeT , a k-tree core [1] ofT is defined
to be the sub-treeT ′ with exactly k leaves which
minimizes the sum of distances from all other nod
in T , where the distance of a node,v, from a tree is
defined to be the minimum distance fromv to any
node in the tree. Whenk = 2, T ′ is a simple path
and is called the 2-core or equivalently acore of the
tree. More formally, letT denote an unrooted tre
with vertex setV (T ). Let |T | denote the number o
vertices inT . A parent of a leaf node is defined
be a node adjacent to that leaf. For a vertexv ∈
T , we define the distanced(v) = ∑

u∈V (T ) d(u, v),
where d(u, v) is the length of the path fromu to
v. If P is a path inT , then we define the distanc
of P , d(P ) = ∑

u∈V (T ) d(u,P ), where d(u,P ) =
minv∈P d(u, v). A path is called acore of T if its
distance is the minimum amongst all paths inT . Let
T ′ be a subtree of the treeT . We define the distanc
of T ′, d(T ′) =∑

v∈V (T ) d(v,T ′), whered(v,T ′) =
minu∈V (T ′) d(u, v).

Definition. Let the number of leaves in a treeχ be
denoted bynleaves(χ). A sub-tree,Ck , of a treeT

containing min(k,nleaves(Ck)) leaves is called ak-
tree core ifd(Ck) = minS d(S), whereS is any sub-
tree ofT with k or less leaves.

We note that, as a consequence of optimiza
criterion, the leaves of ak-tree core will be the leave
-

In [1], a centralized algorithm is presented for co
puting the core using the concept of thedistance saved
by a path. LetPl,v be a path from a vertexv to a leaf
l. Then thedistance savedby this path,saved(Pl,v)

is defined asd(v)− d(Pl,v). The value ofsaved(Pl,v)

is the most important measure for guiding the optim
selection of path extensions from the vertexv. From
the definition,saved(Pl,v) > saved(Pl′,v) iff d(Pl,v) <

d(Pl′,v). Consequently, minimizingd(Pl,r ) is equiva-
lent to maximizingsaved(Pl,r ) over leavesl ∈ Tr .

3. A distributed algorithm for finding a spanning
tree in a dynamic network

A topology graph for a mobile ad hoc network [
can have any arbitrary structure. Hence, the first s
in deriving some meaningful structure is to construc
(distributed) spanning tree.

To facilitate the description we maintain an a
tribute calledcolor for every node which is indicativ
of the state of that node:

• white: parent pointer= ∅, child list= ∅.
• gray: parent pointer= ∅, child list 	= ∅.
• black: parent pointer	= ∅.

In the following anα-cone denotes a region of spa
with the origin at the concerned node and bounded
two rays with an angleα between them. Anα-cone is
empty when there are no neighboring nodes in tha
gion of space or if present they are all black. The no
which are on the periphery will know their ‘periphe
al’ status by virtue of not having any nodes, or on
black nodes, in someα-coneas shown in Fig. 1. The
algorithm has two phases as described below:

(1) Find Forest: In this phase, every node executes
procedure find_parent(). Nodes that areblack do
not accept any children since this may result
the formation of cycles. After completion of th
phase a distributed forest is formed.

(2) Connect Trees: In the second phase we merg
the directed trees into a directed spanning tree.
first introduce some terminology:
• A message,M1, is said to have ahigher priority

than some other message,M2, based on som
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Fig. 1. A gray node,v1, that has no white/gray node in someα-cone
is free to choose its parent whilev2 cannot since it is unable to fin
any orientation of the rays which forms an emptyα-cone.

property (for instance the MAC id) of the nod
initiating M1 andM2.
• Edges which are part of the trees and th

which are outside the trees constructed in ph
1, are calledtree edgesand non-tree edges,
respectively.
• Let root(v) denote the root of the tree contai

ing v.

procedure find_parent() {
set color ← white
while (there is no empty α-cone) {
receive message c from child
if (c != NULL) {
set color ← gray

}
}
/* an empty α-cone was found */
if (non-black neighbor, n, exists)
{
set parent ← n
set color ← black

} else {
/* root */
set parent ← self
set color ← black

}
}

Each node individually ensures that after the co
pletion of this phase all non-tree edges connec
neighbors which are in the same tree. To ensure
in the network waits until a Usurp-Rootroot(v) is re-
ceived by it and by all its neighbors,ui ’s, which are
connected by non-tree edges. If Usurp-Rootroot(v) =
Usurp-Rootroot(ui)

for all i, then v copies Usurp-
Rootroot(v) to all its children. If on the other han
some neighbor,uk, received a different message th
uk andv decide which root has a higher priority an
‘temporarily connect’ this non-tree edge. This temp
rary connection is converted into a tree edge when
acknowledgment traverses it. The message from
root with higher priority, let us say Usurp-Rootv , is
forwarded touk and the parent (child) pointer in th
node receiving the lower (higher) priority message
updated (added). The nodeuk forwards the messag
to both its children as well as its parent. Thus,
Usurp-Root message from the root with highest p
ority makes a complete round trip in the network. T
cases, which can occur while a message is being
warded in the tree, are:

(1) Two Usurp-Roots from the same root collide. T
message with the larger hops traversed is allow
to proceed.

(2) Two Usurp-Roots from different roots collid
The message from the root with higher prior
proceeds.

The nodes which temporarily connected their ed
only acknowledge if they successfully receive a
knowledgments from all their new children. In ca
they receive another Usurp-Root then the same pr
dure is repeated. An example run of the algorithm
illustrated in Fig. 2. Messages from the rootr1 (which
has the highest priority) reach the nodesvb and va

which forward it the nodesvc (in treeT3) and r2 (in
treeT2), respectively, and treesT2 andT3 get oriented
accordingly.

4. A distributed algorithm for construction of a
k-core

Our algorithm first finds a rooted core as an int
mediate step. This rooted core is then used to cons
a k-core. All steps of the algorithm are animated
message exchanges over the given network.



190 S. Srivastava, R.K. Ghosh / Information Processing Letters 88 (2003) 187–194

of a
h
of

h
of

e
f a

Proof. The problem of finding a core of a treeT can
be solved as follows:

t is
,

nd
ted
the
ld
was

ribed

on
he
e

e.
ong
b-
p the

f

Fig. 2. Connecting the treesT1, T2 andT3 of the forest.

4.1. A rooted core

We begin by defining a rooted core.

Definition. A rooted core of a rooted treeTr is a
path which minimizes the distanced(Pl,r ) amongst all
leavesl, wherePl,r is a path from the rootr to a leafl.

A parallel algorithm for computingk-tree core has
been presented in [3]. One can easily find the core
tree by applying the following results from [2], whic
provide the basis for our distributed implementation
finding thek-tree core backbone in the network.

Lemma 1 [2]. Let treeT be oriented into a treeTr

rooted atr. Let Pdomleaf(r),r be a rooted core ofTr ,
where domleaf(r) is the leaf of this rooted core, whic
we call the dominating leaf. Then there exists a core
T which starts from domleaf(r).

Theorem 1. The problem of finding a core of a tre
can be reduced to that of finding a rooted core o
rooted tree.
(1) OrientT into a treeTr rooted atr.
(2) Find a rooted corePdomleaf(r),r of Tr .
(3) Re-orient T into a tree Tr ′ rooted at r ′ =

domleaf(r).
(4) Find and output a rooted core ofTr ′ .

By Lemma 1 and the definition of a rooted core, i
easy to see that a rooted core ofTr ′ , Pdomleaf(r ′),domleaf(r)
is a core of the treeT . ✷
4.2. The algorithm for rooted core

The algorithm uses the result of Theorem 1 a
each step of the proof, except the first one, is anima
through messages from the root to the leaves or in
opposite direction. The first step of the proof wou
have been accomplished when the spanning tree
constructed and the rest of the phases are desc
below.

4.2.1. Claim dominating leaf status
The tree is already rooted from its constructi

in Section 3. Therefore we only need to find t
dominating leaf, which is the leaf of the rooted cor
in this rooted tree. To do this each leaf sends aclaim-
dominating-leaf message up its parent in the tre
The message consists of the identity of the leaf al
with its distance savedvalue, and the size of the su
tree, which get updated as the message moves u
tree. Each nodev with children {a1, a2, . . . , at } will
choose the leaf (in the sub-tree of its childaj ) with
the largestsavedvalue and as itsdominating childand
will calculate its the newsavedvalue as,saved(v) =
saved(aj )+∑

i size(ai). This iterative computation o
the savings is due to the following result.

Lemma 2. Let Pl,u be a path in subtreeTu of tree
Tr and v be the vertex inPl,u adjacent tou. Then
saved(Pl,u) = saved(Pl,v) + |Tv| , where |Tv| is the
number of nodes in the subtreeTv . (See Fig.3.)

Proof.

saved(Pl,u)− saved(Pl,v)

= (
d(u)− d(v)

)+ (
d(Pl,v)− d(Pl,u)

)

= (|Tv −
(|Tr | − |Tv|

))+ (|Tr | − |Tv|
)

= |Tv|. ✷
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Fig. 3. Bottom up computation ofsavedvalue.

Ties in thesavedvalue of two children is resolve
based on the unique id of the leaf. When the r
chooses its dominating child it sends an acknowle
ment down to its children which is propagated.

(1) Re-orient withdominating leafas root.
The dominating leaf, domleaf, initiates a
Usurp-Rootdomleafand forwards the message to
tree neighbors. This message traverses the w
tree and every tree edge is oriented in the direc
opposite to the movement of the message.

(2) New leaves again contend fordominating leaf
status. Each leaf in this new tree again send
Claim-Dominating-Leafmessage up the tree an
an acknowledgment is sent back to a leaf by
root if its savings are the largest in this new tre
The path which the acknowledgment traver
defines the core of the tree and all node on
core will be able to construct a distributed core

4.3. Extending the algorithm tok-core

The algorithm for finding thek-core is a direct
derivation from the algorithm presented above. T
only change is in phase 3 (see Theorem 1 of S
tion 4.1) of the core finding algorithm. Instead of sen
ing the dominating leaf to their parent, each interme
ate node in the tree sendsk−1 messages from its chi
dren to the parent, i.e., the topk − 1 messages whe
ordered by their savings value. Moreover, the savi
value in the message with the largest savings (the d
inating leaf in that sub-tree) is incremented by the s
of that sub-tree. The root then chooses the firstk − 1
of the leaves as the end points of thek-core and multi-
For proving the correctness of this method
finding thek-core we first make the observation th
our algorithm is essentially a greedy path add
algorithm. Starting from a core of the tree, at t
(k−2)th step of we add a path to some leaf not alre
in the (k − 1)-core to get thek-core. It was shown in
[1] that this simple greedy strategy works.

The core discovery process consists of a se
phases as described in Section 4.2. We can enum
the type of messages required for core discovery
follows:

(1) Create spanning tree
(a) Create Forest(CHOOSE_PARENT)
(b) Join all trees in forest(USURP_ROOT)
(c) Acknowledge finish of join(ACK_JOIN)

(2) Find rooted core
(a) Claim Dominating Leaf Status

(CLAIM_DOM)
(b) Acknowledge Dominating Leaf(ACK_DOM)

(3) Re-orient tree with root at leaf of rooted co
found earlier
(a) Re-orient with root at dominating leaf

(USURP_ROOT)
(b) Acknowledge finish of Re-orientation

(ACK_REORIENT)
(4) Findk leaves with highest savings (Findk-core)

(a) Claim k Dominating Leaf Status
(CLAIM_DOM)

(b) Acknowledge thek leaves with highest sav
ings(ACK_DOM)

5. Incremental update of k-core

Since we are considering networks with nod
moving arbitrarily, the core computation done at so
time cannot be expected to be a valid measure of
tree that minimizes the sum of distances at some a
trary time in the future. Hence it is required that the
be some mechanism torefreshk-core at appropriate
instances in time. If the application requires a corr
core then it may lead to flooding the network w
messages from the above phases very frequently
the other hand, if we can tolerate with an approxim
k-core, then a mechanism that will incrementally c
rect the core can be developed. In fact, there are ce
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applications, such as routing data packets over a net-
work from a source to destination, that can do with ap-
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proximate core maintenance. Besides that we note
a spanning tree of the network after all is not uniq
So maintaining an approximate core can be usefu
a number of circumstance with the flip side of the a
proach being a saving in associated overheads.

The core needs to be maintained in the even
changes in the network topology. The following cas
are handled as follows:

(1) Addition of a node: The node contacts its neare
neighbor and asks to be adopted, giving its s
ings. The parent compares this with the saving
its dominating child. If they are more than the sa
ings of the dominating child then the dominati
child is updated and the message passed to its
ent. This goes on till this message terminates
some node. If it becomes a core leaf then the c
is recomputed.

(2) Deletion of an existing edge: If the deleted edge
was a non-tree edge then no changes are requ
while on the other hand if it was a tree edge th
the following procedure is executed by the tw
nodes,p andc, which were the parent and chil
respectively, on the deleted edge.
The nodep updates its savings. The orphan
child, c, searches for a new parent and initia
addition as described earlier. If there is no par
to choose then it sends a Usurp_Root down
sub-tree to discover any possible connections
a larger tree in the network. If a descend
exists with a connection (that is the graph has
become partitioned) then it initiates Connect Tre
phase as described in Section 3.

(3) Deletion of a node: Equivalent to deletion of an
edge and addition of the orphaned children.

(4) Addition of an edge: This edge is treated as a no
tree edge and no changes in the core are requ
But this has an effect on the cluster connectivit
which influence shortest path computations.

6. Results of experiments

In this section we present the results of our exp
ments with the proposed algorithms for finding sp
ning tree andk-core and maintaining it over time.
-

.

Fig. 4. The topology being considered for observing the effect oα.

6.1. Effect of the parameterα

Each edge in a spanning tree can be viewed
partitioning the set of vertices into two parts. We re
to an important edge in the spanning tree as the
which has a large number of vertices on both sides.
simulated the effect of varying the value ofα and saw
that the results were consistent with the fact that a
value ofα gives a spanning tree which has importa
edges towards the periphery. This is not desirable.
topology being considered is shown in Fig. 4 whi
shows a network of 350 nodes, and the cores obta
for values ofα = 1.1 and α = 3.1 are depicted in
Figs. 5 and 6, respectively.

If one carefully analyzes the algorithm for co
struction of spanning tree, the effect ofα is imme-
diately apparent.When the value ofα is aroundπ , a
node which has no other node to present in one
plane then that node is essentially a vertex on the c
vex hull of the set of nodes in the network. Therefo
at each iteration the algorithm actually finds a con
hull of the remaining set nodes which have not yet c
sen their respective parents. When we have a co
hull with no internal nodes then the algorithm term
nates.

6.2. Effect ofk on structure of core

It has been shown that each(k − 1)-tree core is a
subset of ak-tree core. Hence, increasing the va
of k beyond a point only adds redundant edges wh
are not really required as can be seen in Fig. 7, w
Fig. 6 shows a core with ak value of 5 which seem



S. Srivastava, R.K. Ghosh / Information Processing Letters 88 (2003) 187–194 193

me,

in
es
si-
re.
ise
or
ph
ce

ta-
8 il-
nges
old

i.e.,
tion

om-

ted
of
ter

re
af,
t
s of
also
Fig. 5.K-core forα = 1.1, k = 5.

Fig. 6.K-core forα = 3.1, k = 5.

optimal. The topology being considered is the sa
as in Fig. 4.

6.3. Effect of mobility on maintenance of core

Assuming we can do with some imperfections
the core for some period of time until the chang
in the network become very drastic, it is pos
ble to control overhead for maintenance of co
Notice that imperfection in core can mean a r
in the cost for using that core for transmission
traversal of message from one point of the gra
to the other. So, it may be good idea to balan
that cost with the cost of maintaining core instan
neously as the graph witnesses a change. Fig.
lustrates the relative amount of message excha
when we experimented with different the thresh
Fig. 7.K-core fork = 10,α = 3.1.

Fig. 8. Overhead of core computation for different values of lag (
the number of changes in the topology required for recomputa
of the core).

values that must be reached before the core is rec
puted.

7. Conclusions

In this paper, we have proposed a distribu
algorithm for constructing a rooted spanning tree
a dynamic graph that has root toward the cen
of the graph. The construction ofk-core from the
spanning tree involves first finding a rooted 2-co
then reorienting the root of the core at dominating le
and finally converting it into ak-core by sending ou
claimk dominating leaf status messages. All stage
the algorithm are animated through messages. We
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provide specific steps to maintaink-core as the nodes
move about, come alive or go dead. We notice that
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finding and maintaining ak-core in general can be
quite useful for routing and regulating flow of traffic

re
.
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nal
the process of finding spanning tree implicitly involv
construction of (convex) hull of the set of nodes
the dynamic graph. Initially the set consists of
nodes. At each stage of the algorithm a subset of no
choose their parents, and these nodes are prec
those lying on the hull. After the nodes have chos
their respective parent they are eliminated from furt
considerations and the process is repeated. Whe
value ofα is 180 degrees, the technique of identifyi
peripheral nodes of the graph can be seen to const
finding of a convex hull. So, we believe if a less cos
method of identifying convex hull can be found th
our algorithm can speed up. As we mentioned initia
in a dynamic network.
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