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Abstract

A k-coreCy of a treeT is subtree with exactly leaves fork < n;, wheren; the number of leaves i, and minimizes
the sum of the distances of all nodes frafp. In this paper first we propose a distributed algorithm for constructing a rooted
spanning tree of a dynamic graph such that root of the tree is located near the center of the graph. Then we provide a distributed
algorithm for findingk-core of that spanning tree. The spanning tree is constructed in two stages. In the first stage, a forest of
trees is generated. In the next stage these trees are connected to form a single rooted tree. An interesting aspect of the first stac
of proposed spanning algorithm is that it implicitly constructs the (convex) hull of those nodes which are not already included
in the spanning forest. The process is repeated till all non root nodes of the graph have chosen a unique parent. We implementec
the algorithms for finding spanning tree anditsore. A core can be quite useful for routing messages in a dynamic network
consisting of a set of mobile devices.
00 2003 Elsevier B.V. All rights reserved.
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1. Introduction nodes. The connectivity of this graph would depend
on placement of node with relative to each other. For a
graph of this kind finding a rooted spanning tree itself
can be challenging. In this paper first we propose a
distributed algorithm for finding a rooted spanning tree
with the root located being located towards the center
of the graph. The algorithm works in two stages. In the
first stage it finds a spanning forest. In the second stage
* Corresponding author. the trees of the spanning forest are connected together
E-mail addressessaurabh.srivastava@ieee.org to produce a tree with a single root. After we are able
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aspects of the work are gratefully acknowledged. with the problem definition and theoretical preliminar-

Consider a dynamic graph where nodes appear
and disappear with time also the nodes move about
changing connectivity at random. Such a situation
can be witnessed in a network of autonomous mobile
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ies regarding the concept of tlietree core of a tree.
The distributed algorithms concerning finding a rooted
spanning tree of a dynamic network are provided in
Section 3. Section 4 is concerned with the proposed
distributed algorithm fok-core along with its correct-

ness issues. Section 5 deals with incremental mainte-

nance ofk-core as the network changes dynamically.
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of the treeT’. We also note that thie-tree core of a tree
need not be unique.

In [1], a centralized algorithm is presented for com-
puting the core using the concept of ttistance saved
by a path. LetP; , be a path from a vertex to a leaf
. Then thedistance savedy this path,saved?; ,)
is defined ag/(v) — d(P;,»). The value oavedP; ,)

Section 6 presents the results of experiments and Sec-s the most important measure for guiding the optimal

tion 7 concludes the paper.

2. Problem definition

The distributedk-tree core algorithm involves two

broad steps, namely, finding a spanning tree and

then determining &-tree core of that tree. In two

subsequent sections, we discuss the two issues in

detail. For the sake of completeness, in this section,
we present the formal problem definition.

Given a treeT, a k-tree core [1] ofT is defined
to be the sub-tred”’ with exactly k leaves which
minimizes the sum of distances from all other nodes
in T, where the distance of a node, from a tree is
defined to be the minimum distance fromto any
node in the tree. Wheh = 2, T’ is a simple path
and is called the 2ore or equivalently acore of the
tree. More formally, letT denote an unrooted tree
with vertex setV (T). Let |T| denote the number of
vertices inT. A parent of a leaf node is defined to
be a node adjacent to that leaf. For a veriex
T, we define the distancé(v) = ZueV(T)d(u’ v),
where d(u, v) is the length of the path fromx to
v. If P is a path inT, then we define the distance
of P, d(P) = ZueV(T)d(u,P), where d(u, P) =
min,ep d(u, v). A path is called acore of T if its
distance is the minimum amongst all paths7inLet
T' be a subtree of the treéé. We define the distance
of T/, d(T") = Zuevmd(v’ T, whered(v,T") =
minueV(T/)d(u, v).

Definition. Let the number of leaves in a tree be
denoted bynleavesy). A sub-tree,Cy, of a treeT

containing mirk, nleavesCy)) leaves is called &-

tree core ifd(Cy) = ming d(S), whereS is any sub-
tree of T with k or less leaves.

We note that, as a consequence of optimization
criterion, the leaves of &-tree core will be the leaves

selection of path extensions from the vertexrrom
the definitionsaved P, ,) > savedPy ,) iff d(P ) <
d(Py ). Consequently, minimizing(P;,,) is equiva-
lent to maximizingsavedP; ) over leaves € T,.

3. A distributed algorithm for finding a spanning
treein a dynamic network

A topology graph for a mobile ad hoc network [4]
can have any arbitrary structure. Hence, the first step
in deriving some meaningful structure is to construct a
(distributed) spanning tree.

To facilitate the description we maintain an at-
tribute calledcolor for every node which is indicative
of the state of that node:

e white: parent pointe& @, child list=@.
e gray: parent pointes ¢, child list#£ .
e black: parent pointeg @.

In the following an«-cone denotes a region of space
with the origin at the concerned node and bounded by
two rays with an angle between them. Aw-cone is
empty when there are no neighboring nodes in that re-
gion of space or if present they are all black. The nodes
which are on the periphery will know their ‘peripher-
al’ status by virtue of not having any nodes, or only
black nodes, in some-coneas shown in Fig. 1. The
algorithm has two phases as described below:

(1) Find Forest: In this phase, every node executes the
procedure find_parent(). Nodes that atack do
not accept any children since this may result in
the formation of cycles. After completion of this
phase a distributed forest is formed.

(2) Connect Trees: In the second phase we merge all
the directed trees into a directed spanning tree. We
first introduce some terminology:

e AmessageM,, is said to have higher priority
than some other messag¥, based on some
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Fig. 1. A gray nodey1, that has no white/gray node in some&one
is free to choose its parent while cannot since it is unable to find
any orientation of the rays which forms an emptgone.

property (for instance the MAC id) of the node
initiating M1 and M>.

Edges which are part of the trees and those
which are outside the trees constructed in phase
1, are calledtree edgesand non-tree edges
respectively.

Let root(v) denote the root of the tree contain-
ing v.

procedure find_parent() {

set color « white

while (there is no enpty «-cone) {
receive nmessage ¢ fromchild
if (c !'= NULL) {

set color <« gray

}

}

/* an enpty «-cone was found */
i f (non-black nei ghbor, n, exists)

{
set parent <« n
set color <« black
} else {
/* root */
set parent <« self
set color <« black
}

Each node individually ensures that after the com-
pletion of this phase all non-tree edges connect to
neighbors which are in the same tree. To ensure this
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using message passing, each rogt,multicasts a
Usurp-Root message down its tree. Every node,

in the network waits until a Usurp-Rqgfy, is re-
ceived by it and by all its neighbors;’s, which are
connected by non-tree edges. If Usurp-Rogt) =
Usurp-Rook,qy,;, for all i, then v copies Usurp-
RoOtoot(yy to all its children. If on the other hand
some neighboryy, received a different message then
u andv decide which root has a higher priority and
‘temporarily connect’ this non-tree edge. This tempo-
rary connection is converted into a tree edge when an
acknowledgment traverses it. The message from the
root with higher priority, let us say Usurp-Rqotis
forwarded tou; and the parent (child) pointer in the
node receiving the lower (higher) priority message is
updated (added). The nodg forwards the message
to both its children as well as its parent. Thus, the
Usurp-Root message from the root with highest pri-
ority makes a complete round trip in the network. Two
cases, which can occur while a message is being for-
warded in the tree, are:

(1) Two Usurp-Roots from the same root collide. The
message with the larger hops traversed is allowed
to proceed.

(2) Two Usurp-Roots from different roots collide.
The message from the root with higher priority
proceeds.

The nodes which temporarily connected their edges
only acknowledge if they successfully receive ac-
knowledgments from all their new children. In case
they receive another Usurp-Root then the same proce-
dure is repeated. An example run of the algorithm is
illustrated in Fig. 2. Messages from the regt(which

has the highest priority) reach the nodgsand v,
which forward it the nodes, (in tree 73) andr; (in
treeTy), respectively, and tree® andT3 get oriented
accordingly.

4. A distributed algorithm for construction of a
k-core

Our algorithm first finds a rooted core as an inter-
mediate step. This rooted core is then used to construct
a k-core. All steps of the algorithm are animated by
message exchanges over the given network.
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Fig. 2. Connecting the tre€§, 7> and 73 of the forest.
4.1. Arooted core

We begin by defining a rooted core.
Definition. A rooted core of a rooted tre&, is a
path which minimizes the distandép; ,) amongst all
leaved, wherep; , is a path from the root to a leafl.

A parallel algorithm for computing-tree core has

Proof. The problem of finding a core of a trgecan
be solved as follows:

(1) OrientT into a treeT, rooted atr.

(2) Find a rooted cor@yomieafr).r Of 7;.

(3) Re-orient T into a tree 7, rooted atr’ =
domleafr).

(4) Find and output a rooted core Bf .

By Lemma 1 and the definition of a rooted core, itis
easy to see that a rooted corefpf, Pyomieatr),domleatr)s
isacoreofthetre®@. 0O

4.2. The algorithm for rooted core

The algorithm uses the result of Theorem 1 and
each step of the proof, except the first one, is animated
through messages from the root to the leaves or in the
opposite direction. The first step of the proof would
have been accomplished when the spanning tree was
constructed and the rest of the phases are described
below.

4.2.1. Claim dominating leaf status

The tree is already rooted from its construction
in Section 3. Therefore we only need to find the
dominating leaf which is the leaf of the rooted core
in this rooted tree. To do this each leaf senddaam-
dominating-leaf message up its parent in the tree.
The message consists of the identity of the leaf along
with its distance savedalue, and the size of the sub-
tree, which get updated as the message moves up the
tree. Each node with children{a1, a2, ..., a;} will
choose the leaf (in the sub-tree of its chilg) with
the largessavedvalue and as itdominating childand
will calculate its the nevsavedvalue assavedv) =

been presented in [3]. One can easily find the core of a saveda,) + Y, siz€a,). This iterative computation of
tree by applying the following results from [2], which  the savings is due to the following result.
provide the basis for our distributed implementation of

finding thek-tree core backbone in the network. Lemma 2. Let P;, be a path in subtred;, of tree
T, and v be the vertex inP,, adjacent tou. Then

Lemma 1 [2]. Let treeT be oriented into a tred, saved?P; ,) = savedP; ) + |Ty| , where|T,| is the

rooted atr. Let Pyomleatr),r D€ a rooted core of;, number of nodes in the subtrég. (See Fig3.)

where domleafr) is the leaf of this rooted core, which
we call the dominating leaf. Then there exists a core of Proof.

T which starts from domlef). savedP ,) — savedP; ,)
Theorem 1. The problem of finding a core of a tree = (d@) = W) + (d(Prw) —d(PLu)
can be reduced to that of finding a rooted core of a = (|Tv - (|Tr| - |Tv|)) + (|Tr| - |Tv|)

rooted tree. =|Ty]|. O
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1

Fig. 3. Bottom up computation clvedvalue.

Ties in thesavedvalue of two children is resolved
based on the unique id of the leaf. When the root
chooses its dominating child it sends an acknowledg-
ment down to its children which is propagated.

(1) Re-orient withdominating leafas root.
The dominating leaf, domleaf initiates a
Usurp-Rooj,mear@nd forwards the message to all

tree neighbors. This message traverses the whole

tree and every tree edge is oriented in the direction
opposite to the movement of the message.
New leaves again contend falominating leaf

2

status. Each leaf in this new tree again sends a

Claim-Dominating-Leaimessage up the tree and
an acknowledgment is sent back to a leaf by the
root if its savings are the largest in this new tree.
The path which the acknowledgment traverses
defines the core of the tree and all node on the
core will be able to construct a distributed core.

4.3. Extending the algorithm to-core

The algorithm for finding thek-core is a direct
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casts this down the tree. The root itself forms one leaf
of thek-core.

For proving the correctness of this method of
finding thek-core we first make the observation that
our algorithm is essentially a greedy path adding
algorithm. Starting from a core of the tree, at the
(k—2)th step of we add a path to some leaf not already
in the (k — 1)-core to get the&-core. It was shown in
[1] that this simple greedy strategy works.

The core discovery process consists of a set of
phases as described in Section 4.2. We can enumerate
the type of messages required for core discovery as
follows:

(1) Create spanning tree
(a) Create Fores{CHOOSE_PARENT)
(b) Join all trees in fores{USURP_ROOQOT)
(c) Acknowledge finish of joi(ACK_JOIN)
(2) Find rooted core
(a) Claim Dominating Leaf Status
(CLAIM_DOM)
(b) Acknowledge Dominating LedACK_DOM)
(3) Re-orient tree with root at leaf of rooted core
found earlier
(a) Re-orient with root at dominating leaf
(USURP_ROOQT)
(b) Acknowledge finish of Re-orientation
(ACK_REORIENT)
(4) Findk leaves with highest savings (Fikecore)
(a) Claimk Dominating Leaf Status
(CLAIM_DOM)
(b) Acknowledge thé leaves with highest sav-
ings(ACK_DOM)

5. Incremental update of k-core

Since we are considering networks with nodes

derivation from the algorithm presented above. The moving arbitrarily, the core computation done at some
only change is in phase 3 (see Theorem 1 of Sec-time cannot be expected to be a valid measure of the
tion 4.1) of the core finding algorithm. Instead of send- tree that minimizes the sum of distances at some arbi-
ing the dominating leaf to their parent, each intermedi- trary time in the future. Hence it is required that there
ate node in the tree senkls- 1 messages fromits chil-  be some mechanism tefreshk-core at appropriate
dren to the parent, i.e., the tdp— 1 messages when instances in time. If the application requires a correct
ordered by their savings value. Moreover, the savings core then it may lead to flooding the network with
value in the message with the largest savings (the dom-messages from the above phases very frequently. On
inating leaf in that sub-tree) is incremented by the size the other hand, if we can tolerate with an approximate
of that sub-tree. The root then chooses the first1 k-core, then a mechanism that will incrementally cor-
of the leaves as the end points of theore and multi- rect the core can be developed. In fact, there are certain
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00

applications, such as routing data packets over a net—1
work from a source to destination, that can do with ap-
proximate core maintenance. Besides that we note that *| _.
a spanning tree of the network after all is not unique. <=
So maintaining an approximate core can be useful in e}
a number of circumstance with the flip side of the ap-
proach being a saving in associated overheads.

The core needs to be maintained in the event of *
changes in the network topology. The following cases
are handled as follows: =

50

(1) Addition of a nodeThe node contacts its nearest
neighbor and asks to be adopted, giving its sav-
ings. The parent compares this with the savings of Fig. 4. The topology being considered for observing the effeat. of
its dominating child. If they are more than the sav-
ings of the dominating child then the dominating 6.1. Effect of the parameter
child is updated and the message passed to its par-

ent. This goes on till this message terminates at  Each edge in a spanning tree can be viewed as
some node. If it becomes a core leaf then the core partitioning the set of vertices into two parts. We refer
is recomputed. to an important edge in the spanning tree as the one
(2) Deletion of an existing edgédf the deleted edge  which has a large number of vertices on both sides. We
was a non-tree edge then no changes are requirecsimulated the effect of varying the value®fand saw
while on the other hand if it was a tree edge then that the results were consistent with the fact that a low
the following procedure is executed by the two value ofa gives a spanning tree which has important
nodes,p andc, which were the parent and child, edges towards the periphery. This is not desirable. The
respectively, on the deleted edge. topology being considered is shown in Fig. 4 which
The nodep updates its savings. The orphaned shows a network of 350 nodes, and the cores obtained
child, ¢, searches for a new parent and initiates for values ofa = 1.1 anda = 3.1 are depicted in
addition as described earlier. If there is no parent Figs. 5 and 6, respectively.
to choose then it sends a Usurp_Root down its  If one carefully analyzes the algorithm for con-
sub-tree to discover any possible connections to struction of spanning tree, the effect @fis imme-
a larger tree in the network. If a descendant diately apparent.When the value @fis aroundr, a
exists with a connection (that is the graph has not node which has no other node to present in one half
become partitioned) then itinitiates Connect Trees plane then that node is essentially a vertex on the con-

phase as described in Section 3. vex hull of the set of nodes in the network. Therefore,
(3) Deletion of a nodeEquivalent to deletion of an  at each iteration the algorithm actually finds a convex
edge and addition of the orphaned children. hull of the remaining set nodes which have not yet cho-

(4) Addition of an edgeThis edge is treated as a non- sen their respective parents. When we have a convex
tree edge and no changes in the core are required.hull with no internal nodes then the algorithm termi-
But this has an effect on the cluster connectivities nates.
which influence shortest path computations.

6.2. Effect ok on structure of core

6. Resultsof experiments It has been shown that ea¢h — 1)-tree core is a
subset of a-tree core. Hence, increasing the value
In this section we present the results of our experi- of k beyond a point only adds redundant edges which
ments with the proposed algorithms for finding span- are not really required as can be seen in Fig. 7, while
ning tree and-core and maintaining it over time. Fig. 6 shows a core with & value of 5 which seems
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Fig. 6. K-core fora = 3.1,k =5.

optimal. The topology being considered is the
as in Fig. 4.

same,

6.3. Effect of mobility on maintenance of core

Assuming we can do with some imperfections in
the core for some period of time until the changes
in the network become very drastic, it is possi-
ble to control overhead for maintenance of core.
Notice that imperfection in core can mean a rise
in the cost for using that core for transmission or
traversal of message from one point of the graph
to the other. So, it may be good idea to balance
that cost with the cost of maintaining core instanta-

neously as the graph witnesses a change. Fig. 8 il-
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Fig. 8. Overhead of core computation for different values of lag (i.e.,
the number of changes in the topology required for recomputation
of the core).

values that must be reached before the core is recom-
puted.

7. Conclusions

In this paper, we have proposed a distributed
algorithm for constructing a rooted spanning tree of
a dynamic graph that has root toward the center
of the graph. The construction df-core from the
spanning tree involves first finding a rooted 2-core
then reorienting the root of the core at dominating leaf,
and finally converting it into &-core by sending out

lustrates the relative amount of message exchangesclaim k dominating leaf status messages. All stages of

when we experimented with different the threshold

the algorithm are animated through messages. We also
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provide specific steps to maintatncore as the nodes finding and maintaining &-core in general can be
move about, come alive or go dead. We notice that quite useful for routing and regulating flow of traffic
the process of finding spanning tree implicitly involves in a dynamic network.
construction of (convex) hull of the set of nodes of
the dynamic graph. Initially the set consists of all
nodes. At each stage of the algorithm a subset of nodesReferences
choose their parents, and these nodes are precisely
those lying on the hull. After the nodes have chosen [ S- Per}g' tA-B- JStZ?hef‘;’ Y. Igsgg’gg'ﬂghinsz for core and
their _reSpe_Ctive parentthey are el_iminated from further [2] ;?Ee?\gév{li?r’. L.o, fzirrlnpr:gsoptiéal pa)rallel algor.ithm for a core
considerations and the process is repeated. When the ~ of a tree, J. Parallel Distributed Comput. 20 (1994) 388-392.
value of« is 180 degrees, the technique of identifying [3] S.-C. Ku, W.-K. Shih, B.-F. Wang, Efficient parallel algorithms
peripheral nodes of the graph can be seen to constitute for optimally locating ak-leaf tree in a trge network, in: Proc.
finding of a convex hull. So, we believe if a less costly - 1997 Internat. Conf. on Parallel Processing, ICPP '97.

. . [4] E.M. Royer, C.-K. Toh, A review of current routing protocols
method of identifying convex hull can be found then for ad-hoc mobile wireless networks, IEEE Magazine Personal

our algorithm can speed up. As we mentioned initially, Commun. 17 (8) (1999) 46-55.



