
SATISFIABILITY-BASED PROGRAM
REASONING AND PROGRAM SYNTHESIS 1

by

Saurabh Srivastava

1Revised with minor corrections, and addendums to the original [249].

ABSTRACT

Title of dissertation: SATISFIABILITY-BASED PROGRAM
REASONING AND PROGRAM SYNTHESIS

Saurabh Srivastava, Doctor of Philosophy, 2010

Dissertation directed by: Professor Jeffrey S. Foster
Department of Computer Science

Program reasoning consists of the tasks of automatically and statically verifying correctness
and inferring properties of programs. Program synthesis is the task of automatically generating
programs. Both program reasoning and synthesis are theoretically undecidable, but the results in
this dissertation show that they are practically tractable. We show that there is enough structure
in programs written by human developers to make program reasoning feasible, and additionally
we can leverage program reasoning technology for automatic program synthesis.

This dissertation describes expressive and efficient techniques for program reasoning and
program synthesis. Our techniques work by encoding the underlying inference tasks as solutions
to satisfiability instances. A core ingredient in the reduction of these problems to finite satisfiability
instances is the assumption of templates. Templates are user-provided hints about the structural
form of the desired artifact, e.g., invariant, pre- and postcondition templates for reasoning; or pro-
gram templates for synthesis. We propose novel algorithms, parameterized by suitable templates,
that reduce the inference of these artifacts to satisfiability.

We show that fixed-point computation—the key technical challenge in program reasoning—
is encodable as SAT instances. We also show that program synthesis can be viewed as generalized
verification, facilitating the use of program reasoning tools as synthesizers. Lastly, we show that
program reasoning tools augmented with symbolic testing can be used to build powerful synthe-
sizers with approximate guarantees.

We implemented the techniques developed in this dissertation in the form of the VS3—
Verification and Synthesis using SMT Solvers—suite of tools. Using the VS3 tools, we were able
to verify and infer expressive properties of programs, and synthesize difficult benchmarks from
specifications. These prototype tools demonstrate that we can exploit the engineering advances
in current SAT/SMT solvers to do automatic program reasoning and synthesis. We propose
building future automatic program reasoning and synthesis tools based on the ideas presented in
this dissertation.

SATISFIABILITY-BASED PROGRAM
REASONING AND PROGRAM SYNTHESIS

by

Saurabh Srivastava

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Jeffrey S. Foster, Chair/Advisor
Professor Michael W. Hicks
Dr. Sumit Gulwani
Professor Jonathan Katz
Professor Mike Boyle

c© Copyright by
Saurabh Srivastava

2010

To my parents,
Preeti and Prakash,

and my grandparents.

Acknowledgments

I am greatly indebted to my advisor, Jeff Foster, whose willingness to accept, encourage,
and fund, every experimental and contentious research thought I decided to pursue, amazes me in
hindsight. It would be fair to say that he introduced me to research in programming languages.
My interest in the foundations of programming languages started with a course he taught. To say
that the knowledge I got from him was just technical would be a gross understatement. Research is
half about knowing what problems to solve. Jeff has given me the perspective to pursue the right
research ideas, and also the right attitude to overcome the hurdles a research project invariably
presents. Not only that, his constant advising on matter not just technical, has helped hone my
skills in writing, presentation, articulation, and maybe even helped me become a more capable
social being.

Talking of the research and mentoring “process,” there is probably no better person to refer
to than Mike Hicks, my second advisor. Mike has the uncanny ability to recognize a student’s
aptitude, interests, and potential, and then to encourage them in exactly the right way. I started
working in programming languages as his student and he introduced me to the rigor in the founda-
tions of programming languages—which he knew would attract me to the field. His own research
diversity and time management skills have been a constant source of inspiration and I hope I can
one day be as efficient a researcher as he is. His advising and presence ensured that my graduate
career was a breeze and enjoyable every step of the way.

“This appears to be an impossible problem. Let us see if we can solve it.” If this was ever a
research philosophy, Sumit Gulwani’s would be this. From Sumit, my third advisor, I have learned
that a research agenda is not useful if it is not adventurous, ambitious, and borderline crazy. In
my internship under his guidance, Sumit introduced me to program verification, and we decided to
ignore traditional approaches in favor of an experimental satisfiability-based approach to program
reasoning. Our experimental program reasoning approach served as a segue into automatic program
synthesis, a problem typically considered intractable. Also, under his mentorship, I have learnt
that research is a social, collaborative, activity. Only through constant conversation do guesses
and intuition develop into concrete solutions. Lastly, from his work ethic I have learned that a
task worth pursuing is a task worth doing well; even if that means spending 16 to 18 hours a day
on it.

I have gained immensely from my interactions with all three of my advisors. I persevere to
constantly change myself to imbibe the qualities they each possess, and I admire. I am grateful to
them for having invested as much time as they did, and for showing me the way forward.

My graduate research career has been meandering, and I would not have been in my current
position, if it had not been for the efforts of my advisors “on the way”. A special thanks goes out to
Bobby Bhattacharjee, whose prodding is partly the reason why I stuck around in graduate school.
He has mentored me in all things non-technical, and indoctrinated in me the perspective that the
only livable place is academia! His motivation and encouragement has helped me immensely. Also,
a thanks to my undergraduate research advisors, Dheeraj Sanghi and Ajit K. Chaturvedi, at IIT
Kanpur, who got me started on research early.

I would also like to thank other professors in the department and on my committee. I am
grateful to Samir Khuller, Aravind Srinivasan, Jonathan Katz, and Mike Boyle for having taken
the time out to give me very useful feedback on my research.

A shout-out is in order to the graduate students, present and past, that make up the
Programming Languages group at the University of Maryland (PLUM). Nik, Polyvios, Iulian,
Chris, Yit, Elnatan, Mark, David An, Mike Furr, Martin, Evan, Avik, Stephen, Ted, and David
Greenfieldboyce were all a constant source of enlightening conversations (research or otherwise).
Also, to all my other friends in the department, Srinivas Kashyap, Shiv, Bhargav, Aswin, Gaurav,
Narayanan, Akhil, and Abheek; who made my graduate school days worth every moment.

Only half jokingly, a nod to all the local coffee shops, without their presence there would
be no caffeine induced writing rampages and this dissertation would have taken twice as long.

A special thanks to my family, immediate and extended. I am humbled by the constant
support and encouragement that my parents have provided throughout this period. My father, a
professor and researcher in Inorganic Chemistry, has been a constant role model for my professional

iii

life; while my mother, with her open-mindedness and enthusiasm for absorbing ideas has been a
constant role model for my personal life. I am also thankful to them for providing the most
intellectually nurturing environment that a child could ask for, and for setting the right expectations
for me as an adult.

Also, a big thanks to my younger brothers, Abhishek and Prashast. They have been a source
of constant pride and perspective. They are my connection to the non-academic world. Lastly,
to the person whose constant presence made the last four years incredibly enjoyable, and who I
cannot thank enough, Lauren.

iv

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Satisfiability- and Template-based Program Reasoning and Synthesis 2

1.1.1 Satisfiability for Reasoning . 2
1.1.2 Satisfiability for Synthesis . 4
1.1.3 Templates . 5
1.1.4 Maximally Best Solutions using Satisfiability 6

1.2 Program reasoning with linear arithmetic . 6
1.3 Program reasoning with predicate abstraction . 8
1.4 Verification-inspired synthesis . 9
1.5 Testing-inspired synthesis . 10
1.6 Engineering Verifiers and Synthesizers . 12
1.7 Key Contributions and Organization . 12

2 Program Reasoning over Linear Arithmetic 14
2.1 Using SAT Solvers for Invariant Inference . 14
2.2 Program Verification . 15

2.2.1 Verification Conditions . 16
2.2.2 Template specification T . 18
2.2.3 Constraint solving . 18
2.2.4 Choice of cut-set . 21
2.2.5 Examples . 22

2.3 Interprocedural Analysis . 23
2.4 Maximally weak Precondition . 26

2.4.1 Locally pointwise-weakest strategy . 27
2.5 Maximally strong Postcondition . 30
2.6 Specification Inference . 31
2.7 Applications . 34

2.7.1 Termination and Bounds Analysis . 34
2.7.2 Counterexamples for Safety Properties . 35
2.7.3 Counterexamples for Termination Properties 37

2.8 Experiments . 37
2.9 Summary . 39
2.10 Discussion . 40

3 Program Reasoning over Predicate Abstraction 41
3.1 Using SMT Solvers for Program Reasoning . 41
3.2 Motivating Examples . 42
3.3 Notation . 45

3.3.1 Templates for Predicate Abstraction . 45
3.3.2 Program Model . 48
3.3.3 Invariant Solution . 49

3.4 Optimal Solutions . 50
3.5 Iterative Propagation Based Algorithms . 54

3.5.1 Least Fixed-point . 56
3.5.2 Greatest Fixed-point . 57

3.6 Satisfiability-based Algorithm . 57

v

3.6.1 SAT Encoding for Simple Templates . 57
3.6.1.1 Encoding VCs as SAT for Simple Templates 59

3.6.2 SAT Encoding for General Templates . 61
3.6.2.1 Encoding VCs as SAT using OptimalNegativeSolutions 62

3.7 Specification Inference . 63
3.7.1 Maximally Weak Pre- and Maximally Strong Postconditions 63

3.8 Evaluation . 66
3.8.1 Templates and Predicates . 67
3.8.2 Verifying standard benchmarks . 67
3.8.3 Proving ∀∃, worst-case bounds, functional correctness 69
3.8.4 Properties of our algorithms . 70
3.8.5 Discussion . 73

3.9 Summary . 73
3.10 Further Reading . 74

4 Proof-theoretic Synthesis: Verification-inspired Program Synthesis 76
4.1 Program Synthesis as Generalized Verification . 76

4.1.1 Motivating Example: Bresenham’s Line Drawing 77
4.2 The Synthesis Scaffold and Task . 80

4.2.1 Picking a proof domain and a solver for the domain 81
4.2.2 Synthesis Task . 81

4.3 Synthesis Conditions . 82
4.3.1 Using Transition Systems to Represent Acyclic Code 82
4.3.2 Expanding a flowgraph . 83
4.3.3 Encoding Partial Correctness: Safety Conditions 85
4.3.4 Encoding Valid Control: Well-formedness Conditions 86
4.3.5 Encoding Progress: Ranking functions . 89
4.3.6 Entire Synthesis Condition . 91

4.4 Solving Synthesis Conditions . 93
4.4.1 Basic Requirement for Solver(sc) . 94
4.4.2 Satisfiability-based Verifiers as Solver(sc) 95
4.4.3 Iterative Verifiers as Solver(sc) . 95

4.5 Experimental Case Studies . 96
4.5.1 Implementation . 96
4.5.2 Algorithms that use arithmetic . 97
4.5.3 Sorting Algorithms . 99
4.5.4 Dynamic Programming Algorithms . 100
4.5.5 Performance . 102
4.5.6 Discussion . 103

4.6 Summary . 105
4.7 Further Reading . 105

5 Path-based Inductive Synthesis: Testing-inspired Program Synthesis 106
5.1 Using Symbolic Testing to Synthesize Programs . 107
5.2 Motivating Example and Technical Overview . 108
5.3 Preliminaries . 111
5.4 PINS: Synthesizing programs using symbolic testing 113

5.4.1 Safety and Termination Constraints . 113
5.4.2 Satisfiability-based Reduction . 116
5.4.3 Directed path exploration using solution maps 117
5.4.4 PINS: Path-based Inductive Synthesis . 118

5.5 Synthesizing inverses using PINS . 120
5.5.1 Mining the flowgraph, predicates and expressions 120
5.5.2 Axiomatization for handling Abstract Data Types 121

vi

5.5.3 Recursion . 121
5.5.4 Sequential composition: Synthesizing Inverses 123
5.5.5 Parallel composition: Synthesizing Network Programs 124

5.6 Experiments . 125
5.6.1 Case Study: Inverting the LZ77 Compressor 126
5.6.2 Benchmarks . 128

5.6.2.1 Program Inversion: Sequential Composition 128
5.6.2.2 Client-Server: Parallel Composition 129

5.6.3 Experience and Performance . 130
5.7 Summary . 130
5.8 Further Reading . 130

6 Engineering Satisfiability-based Program Reasoning/Synthesis Tools 133
6.1 Using off-the-shelf SAT/SMT solvers . 133
6.2 Tool Architecture . 133

6.2.1 Tool Interface . 134
6.2.2 Solver Interface . 135

6.2.2.1 Compensating for limitations of SMT solvers 135
6.2.2.2 Axiomatic support for additional theories 136

6.3 Concurrent reduction for super-linear speedup . 137
6.4 Summary . 138

7 Extensions and Future Work 139
7.1 Expressiveness . 139
7.2 Applications to non-(sequential, imperative) models 140
7.3 Synthesis as augmenting compilation . 141

8 Related Work 142
8.1 Program Reasoning . 142

8.1.1 Program Verification . 142
8.1.1.1 Invariant validation using SMT solvers 142
8.1.1.2 Invariant Inference over Linear Arithmetic 143
8.1.1.3 Invariant Inference over Predicate Abstraction 145
8.1.1.4 Verification without invariant inference 146

8.1.2 Specification Inference . 147
8.2 Program Synthesis . 147

8.2.1 Deductive Synthesis . 148
8.2.2 Inductive Synthesis . 148
8.2.3 A Liberal View of Synthesis . 149

9 Conclusion 152

A Correctness of Satisfiability-based Algorithms 153
A.1 Linear Arithmetic: Correctness of Precondition Inference 153
A.2 Linear Arithmetic: Refined neighborhood structure Nc,π 155
A.3 Predicate Abstraction: Correctness of Optimal Solution Computation 155
A.4 Predicate Abstraction: Correctness of the Reduction to SAT 162

B Code Listings 164
B.1 Linear Arithmetic Invariant Inference . 164
B.2 Predicate Abstraction Invariant Inference . 164
B.3 Proof-theoretic Synthesis . 165
B.4 Path-based Inductive Synthesis . 167

Bibliography 169

vii

List of Tables

2.1 Program verification over linear arithmetic. 38
2.2 Interprocedural analysis over linear arithmetic. 38
2.3 Maximally strong postcondition inference over linear arithmetic. 39
2.4 Weakest precondition inference over linear arithmetic 39

3.1 Weakest precondition transformer. 50
3.2 The assertions proved for verifying simple array/list programs. 67
3.3 Time taken for verification of data-sensitive array and list programs. 67
3.4 The assertions proving that sorting programs output sorted arrays. 68
3.5 Time in seconds to verify sortedness for sorting programs. 68
3.6 Verifying that sorting programs preserve their elements. 69
3.7 Time in seconds to verify preservation (∀∃) for sorting programs. 69
3.8 Precondition inference for worst-case upper bounds. 70
3.9 Time in seconds to infer preconditions for worst-case upper bounds of sorting pro-

grams. 70
3.10 Precondition inference for given functional specifications. 72
3.11 Time taken for maximally weak preconditions for functional correctness. 72

4.1 Experimental results for proof-theoretic synthesis 103

5.1 Experimental results for PINS. 131

viii

List of Figures

1.1 The expressivity of the octagon domain vs. linear arithmetic templates. 6
1.2 Template facilitate enumerating local neighbors . 7

2.1 Illustrating program reasoning over linear arithmetic using an example. 16
2.2 Suitable cut-sets for conjunctive, as opposed to disjunctive, invariants 22
2.3 Interprocedural analysis examples. 25
2.4 Context-sensitive interprocedural analysis examples 25
2.5 Maximally weak precondition examples. 27
2.6 Maximally weak preconditions as pointwise-weakest relations. 28
2.7 Need for iteration in maximally weak precondition inference. 30
2.8 Maximally strong postcondition examples. 31
2.9 Discovering maximally weak preconditions for termination. 34
2.10 Termination in the presence of recursion . 35
2.11 The most general counterexample that leads to a violation of safety. 36
2.12 Non-termination examples . 37

3.1 Verifying that insertion sort preserves all its input elements 43
3.2 Verifying that a program that checks set inclusion is functionally correct. 44
3.3 Generating the weakest precondition for the worst-case of selection sort 46
3.4 Generating the weakest precondition for correctness of binary search. 47
3.5 Structural decomposition to get positive and negative unknowns. 48
3.6 OptimalSolutions . 51
3.7 The predicate cover operation. 54
3.8 Iterative GFP and LFP inference. 55
3.9 Illustrative example for satisfiability-based reduction. 58
3.10 Iterative and Satisfiability-based Weakest Precondition Algorithms 64
3.11 Iterative and Satisfiability-based Strongest Postcondition Algorithms 65
3.12 Statistical properties of our algorithms over predicate abstraction. 71
3.13 Robustness of invariant inference algorithms . 73

4.1 Illustrating proof-theoretic synthesis over Bresenham’s line drawing. 78
4.2 The proof-theoretic synthesis algorithm. 92
4.3 Synthesis results for arithmetic programs . 98
4.4 Synthesis results for sorting programs. 100
4.5 Synthesis results for dynamic programming programs. 102

5.1 Ilustrating PINS: Example program and its output. 108
5.2 Ilustrating PINS: Flowgraph, mined expressions and predicates. 108
5.3 The formalism for symbolic executor. 113
5.4 The PINS semi-algorithm. 119
5.5 Automatically mining flowgraphs, predicate and expression sets. 122
5.6 Handling recursion in PINS . 122
5.7 Using PINS to generates inverses or client-servers 123
5.8 The LZ77 compressor and the mined templates. 126
5.9 Input to PINS and corresponding synthesized program. 127

6.1 The architecture of the VS3
LIA and VS3

PA tools. 134

A.1 Importance of staying within templates . 153
A.2 Decomposition negative solutions . 160

ix

List of Abbreviations

SAT Propositional Satisfiability
SMT Satisfiability Modulo Theories
VS3 Verification and Synthesis using SMT Solvers
PINS Path-based Inductive Synthesis
SPANS Satisfiability-based Program Analysis and Synthesis

x

Chapter 1

Introduction

“If I have a thousand ideas and only one
turns out to be good, I am satisfied.”

— Alfred Bernhard Nobel1

We invest lots of time and money in software development, and despite major advances
in software engineering practice, software development is still tedious, costly, and error-prone.
Despite building software being inefficient, more and more of our personal devices are leveraging
the flexibility that software provides, and software is increasingly being used to control critical
systems; such as automotive and flight control, and financial and medical services. Hence, there is
an increasing need to build certifiably correct software, and to do it in a cost-efficient way.

This dissertation addresses two aspects of this problem: program reasoning and program
synthesis. Program reasoning consists of proof inference (verification) and specification inference,
and program synthesis consists of program inference. Verification is the task of proving that a
program meets its specification. Specification inference is the task of inferring properties that hold
of a given program. Program synthesis is the task of inferring a program that matches a given
specification.

There has been a lot of work on program reasoning and less so on synthesis. Despite
significant work on formal methods [165, 73, 99], tools for reasoning about software programs
are not commonplace. This is partly because of the inability of currents tools to automatically
infer formal descriptions of commonly occurring program constructs, e.g., formulae that quantify
over all elements of a data structure. We need to develop techniques that can infer arbitrarily
expressive formulae, required for program reasoning in practice. We find that enabling inference
of expressive properties will also enable automatic program synthesis. In fact, we show that
program reasoning tools can be used to directly build program synthesizers. However, the lack
of expressivity in current tools is not surprising, as even checking formulae in the presence of
quantification is theoretically undecidable. In this dissertation, we show how with minimal help
from the user we can build techniques that infer arbitrarily expressive program properties, and
indeed also synthesize programs.

The thesis we explore in this dissertation is the following: We can build expressive and effi-
cient techniques for program reasoning and program synthesis by encoding the underlying inference
tasks as solutions to satisfiability instances.

The key technical tools we apply towards this thesis are solvers for satisfiability. Significant
engineering effort has led to powerful solvers for propositional satisfiability (SAT) and satisfiability
modulo theories (SMT). However, program reasoning and synthesis are not directly encodable
as SAT or SMT instances. Therefore, we have to develop the theoretical underpinnings of a
satisfiability-based approach to program reasoning and synthesis. While SAT/SMT solvers have
previously been used to validate guesses about program properties [17, 258, 15, 3], we instead

1Swedish Chemist, Engineer and Inventor of dynamite, who used his enormous fortune to institute the Nobel
Prizes. 1833-1896. In context, the idea in this dissertation will be to generate constraints, for which if a solver
finds any good solution that is satisfying, then that correspond to solutions to the original programming language
problem.

1

encode the program property (for reasoning) and even the program (for synthesis) as models of
a satisfiability instances. This finite encoding is facilitated by hints provided by the user. Thus
solving the satisfiability instance directly solves the programming languages problem.

1.1 Satisfiability- and Template-based Program Reasoning
and Synthesis

Propositional satisfiability, specifically 3SAT, is arguably the most studied NP-complete
problem. Propositional satisfiability is the problem of finding a boolean assignment to the atomic
boolean variables in a formula such that the formula evaluates to true. The 3SAT version, in
which the formulae are in CNF form with at least 3 disjuncts in each clause, is NP-Complete.
Satisfiability modulo theories (SMT) addresses the satisfiability problem in which the atoms are
facts from particular theories instead of propositional variables. So, (b1 ∨ b2 ∨ b3) ∧ (b1 ∨ b5 ∨ b6)
is an example SAT formula, while (x = y ∨ x > z ∨ y < z) ∧ (x = y ∨ x > z − 10 ∨ y < z) is an
example SMT formula with atoms from the theory of linear arithmetic.

While 3SAT is NP-complete, in recent years researchers have developed many tools that
can efficiently solve even very large SAT instances arising in practice. Even further, due to the
development of fast decision procedures for particular theories, and their integration into the
core SAT solving techniques, has resulted in SMT solvers that are capable of solving large SMT
instances, from domains such as hardware and software verification [20]. These tools can solve
difficult benchmarks from program verification in the order of a couple of seconds [18].

In this dissertation, we apply SAT and SMT solvers to problems they have not been used
in before, e.g., invariant and pre-/postcondition inference and program synthesis. While they have
been engineered to be fast on verification benchmarks where the proof of correctness is provided by
the user, our experiments in this dissertation show that the solvers are also efficient on instances
arising out of proof inference, i.e., for program reasoning, and program inference, i.e., for program
synthesis.

1.1.1 Satisfiability for Reasoning

Webster’s dictionary defines “reasoning” as inference of a statement offered in explanation
or justification. Our view of reasoning about programs consists of offering justifications for spe-
cific properties such as correctness or termination, i.e., verification, and inferring descriptions of
their input-output characteristics and the associated justification for why the properties hold, i.e.,
specification inference. These formal justifications come in the form of program invariants that we
infer. Invariants are tricky to infer for loops.

The key difficulty in automatic program verification is in inferring inductive loop invariants.
We treat specification inference as an extension of the verification problem in which one infers
invariants about the pre- or postcondition in addition to inferring loop invariants. We desire that
the facts we infer about the precondition be the weakest possible and the postcondition be the
strongest possible. Inferring weakest preconditions ensures that any other valid precondition is
a specialization of the inferred precondition. Analogously, inferring the strongest postcondition
ensures that any other valid postcondition is a specialization of the inferred postcondition.

Background: The difficulty in program reasoning The key difficulty in automatic program rea-
soning is the task of inferring suitable invariants. At a particular program location an assertion
over the program state is an invariant if it always holds whenever control reaches that location. A
program state, σ, is a mapping of program variables to values, e.g., σ0 = {x 7→ 0, y 7→ 2, k 7→ 0}
is a state that maps the program variables x, y and k to 0, 2 and 0, respectively. An assertion
holds in a state σ, if the assertion evaluated at the program state is true. For example x = 2k|σ0

evaluates to true, where p|σ is notation for evaluating a predicate p under the map σ.

2

Loop invariants are assertions at loop header locations, i.e., invariants that hold when en-
tering a loop and in each iteration through the loop. A loop invariant is inductive if it can be
shown to hold after an iteration assuming it holds at the beginning of the iteration.

Example 1.1 Given the following program:

x := 0; k := 0; y := 2; while(∗){x := x + y; k := k + 1; } (1.1)

For the loop, the assertion x = 2k is a loop invariant but is not inductive. It is not inductive
because if we assume that x = 2k holds at the beginning of the loop and calculate the effect of the
statements x := x + y; k := k + 1; we cannot derive that x = 2k afterwards, as we do not have
enough information about the value of y in the assumption. On the other hand, x = 2k ∧ y = 2 is
an inductive loop invariant.

A note on notation
Throughout this dissertation, we will use “:=” to denote the imperative state updating assign-
ment, while we will use “=” to denote mathematical equality. The sequencing operator will be
“;”, and “∗” will denote non-deterministic choice. Non-deterministic choice is frequently used
in program reasoning as a safe approximation to conditional guards that cannot be precisely
analyzed, in which case, we assume that both branches can be taken.

It is straightforward to observe that a given assertion can be checked/validated to be a
correct inductive loop invariant using SMT solving. For instance, we can check whether the
candidate assertions x = 2k and x = 2k ∧ y = 2 are valid invariants I for the loop. To do that,
we simply encode the definition of an inductive loop invariant as formal constraints. One way to
formally reason about an assignment x := e is to treat it as an equality between the output value
of x, notated as x′, and the expression e computed over the inputs. Thus, a set of assignments
constitute a transition that takes input values to output values of the variables. In our example,
there are two paths of sequences of statements that start and end at either an invariant or program
entry or exit points. One starts at the beginning of the program (with assertion true) and leads
up to the loop (with assertion I), and another goes around the loop (starting and ending with
assertion I). For these paths, we get the following constraints:

true ∧ x′ = 0 ∧ k′ = 0 ∧ y′ = 2 ⇒ I ′

I ∧ k′ = k + 1 ∧ x′ = x+ y ⇒ I ′
(1.2)

Notice how the consequents are also raised to the output, primed, values. This forwards reasoning
approach is similarly used in SSA [5] or symbolic execution [166]. Alternatively, Hoare’s rule for
assignments [150] can be used for backwards reasoning, and is plausible for the case of verification
(Chapter 2). The SSA-style forward approach additionally works for program synthesis where the
statements are unknown, and alleviates problems with attempting to substitute into unknowns (as
in Chapters 3, 4, and 5).

While checking that a given assertion is an inductive loop invariant is reducible to SMT
queries, as we have seen, it is not obvious how SAT/SMT solving can be used to infer loop
invariants. Inference using SAT/SMT solving is one of the key technical contributions of this
dissertation.

Encoding invariant inference as SAT/SMT solving For a given SAT/SMT instance a satisfiability
solver computes two values: a binary decision about whether the instance is “sat” or “unsat”,
and an optional model in the case of satisfiable instances. A model is a value assignment to
the unknown variables that leads to the instance evaluating to true, e.g., for the case of a SAT
instance the model is a assignment of boolean truth values to the propositional variables in the
formula. Previous uses of SAT/SMT solvers in invariant validation only use the binary “sat/unsat”
decision to check the correctness of the guess for the invariant. More broadly, in program analysis
the models from SAT solvers have been used previously to derive counterexamples that explain
faults [223, 201, 52, 272, 27, 189, 123].

3

Our approach is different in that we encode all valid invariants as solutions to the satis-
fiability instance. The model generated by the SAT/SMT solver can then be directly translated
to an invariant. The key to doing this is to assume a structural form—i.e., a template, which
we discuss in detail later—for the invariant. Then each component in the chosen structure of the
invariant is associated with a indicator boolean variable. Values, true or false, for the variables
indicate the presence or absence of the component, respectively. Constraints, i.e., clauses in the
satisfiability instance, are generated over these boolean indicators from the program being verified.
Solving the satisfiability instance gives us the model, i.e., values of the boolean indicators, which
are used to reconstruct the actual invariant of the assumed structure. Notice that a model only
exists if the instance generated is actually satisfiable. If the instance is unsatisfiable, it implies
that no invariant exists of the chosen structural form, i.e., one which is an instantiation of the
given template.

A characteristic of a satisfiability-based invariant inference approach is that if there are
multiple invariants, the solver finds one valid solution that corresponds to one valid invariant.
This suffices for program verification, as any inductive invariant proves the required properties,
but not for specification inference where we want the best, i.e., weakest or strongest, restrictions
on the input or output, respectively. Next, we describe how we can augment the basic approach
to generate the weakest/strongest invariants and pre/postconditions for specification inference.

Extending to specification inference Once we have the ability to encode inference as a satisfiability
query, it opens the door to inferring properties of programs. We can infer preconditions that
ensure desired properties of the program’s execution, or preclude bad executions. Similarly, we can
infer postconditions that hold of program executions. This application highlights a key difference
between the mode of use of SMT solvers in this dissertation from that of previous approaches. We
can encode pre- and postcondition generation as the inference of an additional invariant at the
beginning or end of the program, respectively. The technical developments for invariant inference
are correspondingly put to use in deriving specifications, i.e, pre- and postconditions.

Not only that, we can even encode that the desired facts are maximally best, i.e., precondi-
tions are maximally weak and postconditions are maximally strong, which ensures that any other
valid pre- or postcondition can be derived from them. This is a non-intuitive application of solvers
that have a binary output, and it requires the introduction of other key ideas, namely templates
and local encodings, which we describe later (Section 1.1.4).

Automatically deriving pre-/postconditions or specifications is useful as it gives insights
into the behavior, good or bad, of the program. For instance, our tool can automatically analyze
Binary Search to infer it is only functionally correct if given a sorted input array. It can also
analyze Selection Sort to infer that the worst-case number of swaps happen when it is given an
array that is almost completely sorted, except that the last element is smaller than the rest.
We derive descriptions of behavior that are provably correct (because they are formal and have
corresponding invariants associated with them) yet readable (because we infer the least restrictions
conditions). Such a tool that is automated, infers expressive properties that are proven formally
correct, and outputs readable descriptions has the potentially to significantly help the developer
in debugging and interface design.

1.1.2 Satisfiability for Synthesis

Program synthesis is the task of automatically generating a program that matches a given
specification. We consider specifications that are mathematical descriptions of the input-output
behavior, and also alternative specifications, e.g., as the relationship of a program to another
program or as input-output examples.

Program synthesis and program reasoning are in intimately related. If a technique cannot
reason about a program specification, given the program, there is no hope of synthesizing a program
that meets the specification. Additionally, the provided specification has to be relatively complete
so that the synthesizer generates only relevant programs. Such full functional specifications are

4

typically expressed using quantifiers, and therefore we need an expressive reasoning technique, such
as the one we develop in this dissertation, to build our synthesizer on top of.

We use two forms of program reasoning techniques, which lead to synthesizers with differing
characteristics. Our first technique, proof-theoretic synthesis, builds directly off program verifica-
tion tools and therefore provides formal guarantees about the synthesized program. Our second
technique, path-based inductive synthesis (PINS), leverages symbolic testing—which can be seen
as an approximation to formal verification—for synthesizing programs that are correct up to the
guarantees that testing provides.

Advantages of a satisfiability-based framework for synthesis As we will see, one of the key require-
ments of a synthesizer is the need to simultaneously reason about program structure, correctness,
and termination. In a satisfiability-based framework, these just correspond to additional clauses
in the SAT instances. One can even add clauses corresponding to performance, restrictions on en-
vironment interaction (e.g., messages exchanged, information leaked, or locks acquired), resource
(e.g., CPU, memory) utilization, and other defining characteristics of the desired program. In this
dissertation though, we restrict attention to the core requirements (structure, correctness, and ter-
mination). Such combinations are not feasible in traditional approaches to verification and hence
we feel that a satisfiability-based reasoning framework is a key facilitator for automatic program
synthesis.

1.1.3 Templates

In this section, we elaborate on the key role played by templates in our satisfiability-based
approach. Templates restrict attention to a relevant space, be it the space of invariants in reasoning
or the space of programs for synthesis. Such restrictions are essential, as the space of all possible
proofs/programs is likely to remain intractable no matter how sophisticated our theorem proving
technology becomes.

Templates provide the form of the desired entities we wish to mechanically infer. For in-
stance, in the case of verification, we intend to infer invariants that provide the proof of correctness
of programs. In this case, the technique takes as input a template form (i.e., an expression with
holes “[−]”) for the expected invariants. For example, a template ∨2(∧3[−]) indicates that the
invariants contain at most three conjuncts inside each disjunct, of which there can be at most
two. A template ∀(∧3[−] ⇒ ∧3[−]) can be used to infer quantified invariants. Similar templates
are used to specify the desired form of inferred preconditions and postconditions. In the case of
synthesis, scaffolds are templates for desired programs.

Note that templates do not describe specific structures (invariants or programs), but rather
their class. In this regard, they are analogous to abstract domains, which have been used in
earlier approaches to program reasoning, e.g. in abstract interpretation [73, 33, 75], and model
checking [99]. Templates can be viewed as an optimized approach to lifting domains to more
expressive relations. For instance, while a template ∀(∧3[−] ⇒ ∧3[−]) can be very efficiently
handled in our system because of its restricted structure (that the user guessed), it can be viewed
as a specialization of the domain for the holes, lifted to disjunction, and additionally quantification.
Such a general domain will be very inefficient, if at all the theoretical machinery can be built, and
consequently not practical. Additionally, we find that the expressivity afforded by templates
facilitates not only reasoning but also program synthesis.

For example, a widely used domain is the octagon domain [203], which can specify facts
between two variables, x and y, of the form ∧i(±x±y ≤ c). On the other hand, templates allow us
to specify not just conjunctions, but also atomic facts such as c0 + c1x+ c2y+ c3z . . ≥ 0, wrapped
inside arbitrary boolean connectives, e.g., disjunctions and even quantifiers. The difference in the
expressivity of an octagon domain and a linear arithmetic template is illustrated in Figure 1.1.

While strictly more expressive for given facts, in general templates are incomparable to
domains because for templates the outerlevel form is more strictly specified. For instance, an
octagon domain can represent any arbitrary finite number of conjuncts of a limited form, while a
template requires a finite upper bound on the number of conjuncts (in each disjunct, and an upper

5

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

���

���

��

��

���

	�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����������������������������������
......

Linear arithmetic template

Octagon

Figure 1.1: The expressivity of the octagon domain vs. linear arithmetic templates.

bound on the number of total disjuncts in the DNF representation). In practice though, the finite
bounds can be chosen to be large enough to capture all expected facts.

The use of templates parameterized with finite bounds introduces tradeoffs between expres-
sivity and efficiency, which the user can tune. While a template with larger bounds allows for
more expressive invariants, the corresponding satisfiability instances that need to be solved are
proportionally bigger, which in some cases also means that they are harder to solve. With the
current state-of-art it is most prudent to have the user guess the template parameters. In the
future we expect it will be feasible iteratively explore the space of the parameters automatically.

1.1.4 Maximally Best Solutions using Satisfiability

The use of templates enables us to compute optimal, i.e., maximally best, values required
for certain problems in a satisfiability-based framework. The key insight is based on local reasoning
(in the proof) and finite satisfiability encoding (of local constraints). For instance, we can compute
maximally weak preconditions and maximally strong postconditions using a finite encoding into
satisfiability.

This is a novel application of satisfiability solvers whose search for a satisfying solutions does
not have any particular monotonicity property and may output any satisfying solution. To get
optimal solutions we need to ensure through appropriate constraints that every satisfying solution
is a local maxima.

Example 1.2 Figure 1.2 shows a lattice whose elements are two linear inequalities, over variables
x and y, conjuncted together. We concentrate on the lattice point x − y ≥ 0 ∧ x + y ≤ t. If
we assume a template that can only represent constants of a certain maximum size, say c, then
it tells us what the smallest possible deviation (shifting or rotation) can be. In particular it will
be related to the smallest possible constant, i.e., 1/c, expressible under this assumption. We can
finitely enumerate the local neighbors (only because of the presence of a template) and therefore
construct a finite encoding of maximal/minimal optimality. For instance, in the example above,
we can constrain the system to say that each immediately weaker neighbor is not “valid” while
the current lattice point is “valid”—whatever the notion of validity is. Then just by solving the
satisfiability instance, we will generate points in the lattice that are maximal, i.e., they are valid
while any immediate weaker points are not. This would not have been possible without a template,
as we would not know what the least weakening is.

1.2 Program reasoning with linear arithmetic

While linear arithmetic expressions are relatively simple to reason about mechanically, they
have many applications in program reasoning and—as we see in this dissertation—in program

6

x

y

(a)

x− y − 1
c
(x+ y) ≥ − t

c
∧ x+ y ≤ t

false or ⊥

true or >

x− y ≥ 0 ∧ x+ y ≤ t

x− y ≥ 0 ∧ x+ y ≤ t+ 1
c

x− y ≥ 0 ∧ x+ y − 1
c
(x− y) ≤ t

x− y ≥ −1
c
∧ x+ y ≤ t

(b)

Figure 1.2: Templates facilitate enumerating local neighbors (dashed lines). Shown here is the
case of facts of the form a ∧ b, where a and b are linear inequalities over variables x and y. (a)
Each fact (lattice point) induces an area in the x, y-graph. The shaded area denotes the lattice
point x− y ≥ 0 ∧ x+ y ≤ t, with each inequality being the bold line at the boundary of the area.
Four lattice points immediately weaker than this fact exist, as shown by the dotted lines. We get
two local (weaker) neighbors by shifting one of the inequalities by a small amount. We get another
two local (weaker) neighbors by rotating one of the inequalities by a small angle. (b) Partial
order lattice, with elements that are conjunctions of linear inequalities, ordered by the implication
relation. We expand out the original fact, and its four immediately weaker neighbors in the lattice
that can be enumerated because of restrictions on the maximum constant c representable in the
system.

7

synthesis. Linear arithmetic can be used to reason about a wide variety of program properties
through suitable modeling. For instance, not only does it suffice for a fair majority of interesting
invariants required for proving memory safety or termination, but we can also reason about the size
of data structures with insert/delete operations, or array bounds checks using linear arithmetic.

Templates over linear arithmetic are atomic linear relations wrapped within an arbitrary
boolean structure. In this dissertation, for linear arithmetic we consider only the boolean structures
without quantification, i.e., limited to conjunctions and disjunctions. Quantification is handled for
predicate abstraction, described later. Negation is at the innermost level, and is encoded by
suitably modifying the atomic inequality. Without loss of generality, we assume that the atomic
linear relations are of the form c0 + c1x + c2y + c3z . . ≥ 0, where x, y, z are program variables,
ci’s are integer coefficients, and the boolean structure is described using disjunctive normal form
(DNF).

Our linear arithmetic templates are parameterized by two integer values: the maximum
number of disjuncts in the outermost disjunction, and the maximum number of conjuncts in
each disjunct. For example, a template with 2 disjuncts and 3 conjuncts can model the formula
(x = y ∧ x > 10) ∨ (x > y ∧ y ≤ z ∧ x ≤ 0).

Example 1.3 For inferring an invariant for the program in Example 1.1, a plausible template
could be conjunctions, let us say five in number, of linear inequalities between the variables, c0 +
c1x + c2y + c3k ≥ 0. Here ci’s are the unknown (integer) variables. Notice that the invariant
x = 2k ∧ y = 2 can be embedded in this template as (x − 2k ≥ 0) ∧ (−x + 2k ≥ 0) ∧ (y − 2 ≥
0) ∧ (−y + 2 ≥ 0) ∧ (1 ≥ 0). The last term is one way to encode true as a linear relation.
Using Eq. (1.2), we generate (integer) constraints over the ci’s. We then assume a bit-vector
representation of a suitably large size for each of the integer unknowns, and generate a SAT instance
over boolean indicator variables. We can directly read off the invariant, from the solution to this
instance.

Notice that a template with at least four inequalities can express the inductive invariant
x = 2k ∧ y = 2. On the other hand, if the template had fewer inequalities then the SAT instance
generated would be unsatisfiable. Two inequalities can encode x = 2k, but this fact is not inductive
and therefore the boolean clauses generated for the second constraint in Eq. (1.2) will make the
SAT instance unsatisfiable.

1.3 Program reasoning with predicate abstraction

While linear arithmetic is good for certain classes of properties, in some cases reasoning and
synthesis is best described by more expressive predicates. For instance, consider reasoning about
the contents of arrays or linked data structures (lists, trees). A standard approach to modeling
array reads and writes is through McCarthy’s select/update predicates. Linked data structures
can be modeled using reachability predicates. Such functional modeling of programming constructs
using predicates lends itself well to mechanization through SMT solvers. Predicate abstraction [129]
is an approach that can reason using arbitrary predicates, as long as the underlying theorem
prover/SMT solver knows how to interpret the operators used. In this dissertation, we show how
to do satisfiability-based reasoning and synthesis over predicate abstraction.

Let us elaborate more on the use of predicates for encoding the semantics of programming
constructs. For arrays, the standard approach uses McCarthy’s sel/upd predicates. For array A,
location i, and value v, the predicate sel(A, i) returns the contents at i, and upd(A, i, v) returns
a new array with the contents at i updated to be v. These predicates are related by the axiom:

∀A, i, j, v : sel(upd(A, i, v), j) = if (i = j) then v else sel(A, i)

A version of this axiom originally appeared in McCarthy’s paper [199], and solvers implement
decision procedures that efficiently check the validity of formulae under this axiom, e.g., Z3’s
implementation uses additional combinators [88].

Templates over predicate abstraction consist of a boolean structure (potentially with quan-
tifiers) that contain holes. Each hole is populated with a subset, representing conjunction, of

8

predicates from a given universe Πp. Recall that predicate abstraction represents the abstract
states of a program as subsets of the predicates that hold in the state, and the predicates come
from Πp = {q1, q2, . . , qn}. Each qi can be arbitrarily expressive as long as the underlying the-
orem prover/SMT solver understands the operators used. An example of a predicate set is
Πp = {(x = sel(A, i)), (i ≥ z + 1), (A′ = upd(A, z, v))}.

In this dissertation, templates over predicate abstraction are specified as the outer boolean
structure. For example, ∀([−]⇒ [−]) is a generic, fairly expressive, template that we use frequently.
Each of the holes [−] are populated by the system with appropriate conjunctions of predicates from
subsets of Πp.

Not only does our approach to program reasoning leverage the engineering advances made
in SAT/SMT solving, through the use of appropriate templates it also allows us to infer expressive
invariants that were beyond the reach of previous approaches. For instance, we can use this
approach to infer quantified invariants that are facts with universal or existential quantification.
Quantified invariants are very useful in expressing properties of programs manipulating unbounded
data structures where we need to quantify over all elements. Examples of such data structures
that could be of unbounded sizes are arrays, lists, and trees.

Example 1.4 Using predicate abstraction, we can prove selection sort correct by inferring the
following invariant:

i < j ∧ i < n− 1 ∧
∀k : i ≤ k < n− 1⇒ A[n− 1] < A[k] ∧
∀k : i ≤ k < j ⇒ A[min] ≤ A[k] ∧
∀k, k′ : i ≤ k < k′ < n− 1⇒ A[k] ≤ A[k′]

where n is the size of the array A being sorted, i and j are the loop counters for the nested loops, and
min is the index location of relevant minimum element. The templates used are [−], ∀k : [−]⇒ [−],
and ∀k, k′ : [−] ⇒ [−], and the predicates are α < β and sel(A,α) < sel(A, β) (and ≤’s), where
α and β are instantiated with programs variables (i, j, n and min), quantifier bound variables (k
and k′), and their offsets (±1).

1.4 Verification-inspired synthesis

Given a formal specification and constraints on the structure of the desired program, proof-
theoretic synthesis, inspired by verification, simultaneously generates not only a program but also
the corresponding proof of correctness. The proof is a witness to the fact that the program meets
its specification.

The key observation that enables building synthesizers out of verifiers is that when reason-
ing using the transition system representation, statements are just equality predicates. So if our
verifier can reason using this representation with known equalities (for the statements), we can
potentially use it to infer not only the invariant facts, but also the equality facts corresponding to
the statements!

Example 1.5 Let us revisit the program from Example 1.1 and constrain its output. Specifically,
let us say that we expect the program to terminate in a state in which x = 2n, where n is some input
to the program. If the loop guard is x ≤ n instead of non-deterministic choice then the program does
indeed compute x = 2n. Written using a transition system representation, the program constraints
are:

true ∧ S1 ⇒ I
I ∧G ∧ S2 ⇒ I

I ∧ ¬G ⇒ x = 2n
(1.3)

where
S1

.
= x = 0 ∧ k = 0 ∧ y = 2

S2
.
= x′ = x+ y ∧ k′ = k + 1

G
.
= x ≤ n

(1.4)

9

During invariant inference (for reasoning about the given program), each of these constraints had
unknown I and known S1, S2, and G as shown. In this representation, S1, S2, and G are logical
facts that can potentially also be inferred by the program reasoning tool, along with I, i.e., the
proof. So our hope is to send the constraints Eq. (1.3) to existing solvers and get a solution for
S1, S2, G and I, such as Eq. (1.4).

Our optimism may be premature because not all solutions to this underconstrained system
of constraints will be valid programs. The first concern is that the semantics of statement and
guard unknowns are not enforced. Notice that an assignment of S1 = S2 = I

.
= false is a valid

solution, but it does not correspond to any valid assignments. Transitions S1 and S2, which are
conjunctions of equalities between outputs and expressions over inputs, can never be false, and
therefore this solution cannot be translated to any assignments of the form x := e. Correspondingly,
constraints are needed for guard unknowns such that solutions translate to valid control flow. We
call these constraints, which ensure that solutions correspond to valid imperative programs the
well-formedness constraints.

Solving safety constraints (Eq. (1.3)) together with well-formedness constraints indeed yields
valid imperative programs, but it does not preclude trivial solutions. For instance, a solution
G = I

.
= true satisfies the constraints. In fact, G

.
= true corresponds to a non-terminating

loop. We need to eliminate such uninteresting programs, and we therefore also assert termination
constraints.

Solving safety, termination, and well-formedness constraints, together called synthesis con-
ditions, yield valid imperative terminating programs that meet the specification and have a cor-
responding correctness proof. In this dissertation, we show that these constraints can be written
in a form amenable to solving by current verifiers, thereby bringing engineering advances in verifi-
cation to synthesis. We show that satisfiability-based verifiers can be used unmodified as program
synthesizers.

The input to our synthesizer is a scaffold of the desired computation. The scaffold provides
the looping structure (e.g., does the program contain a nested loop, or two loops in a sequence),
constraints on resources (e.g., number of variables), and domain of core operations (e.g., operators,
or function calls available). For example, we may wish to preclude multiplication as one of the
operators in the previous program, because otherwise the synthesizer may generate x := 2n and
terminate immediately. With only linear operators, the synthesizer will be forced to generate a
loop. From the scaffold we generate synthesis conditions, which we solve using satisfiability-based
program verifiers. We have been able to synthesize programs such as Strassen’s matrix multiplica-
tion, Bresenham’s line drawing algorithm, dynamic programming examples, and all major sorting
algorithms just from their scaffold specifications.

Proof-theoretic synthesis leverages the connections between automatic program verification
and automatic program synthesis. If we have a verifier that can reason about programs over a
particular domain, then it can be used as a corresponding synthesizer for that domain, taking as
input a scaffold, and solving additional constraints described by synthesis conditions.

1.5 Testing-inspired synthesis

Given a functional specification, path-based inductive synthesis (PINS), inspired by testing,
leverages symbolic testing to synthesize programs. PINS is a more pragmatic synthesis approach
since it does away with (potentially complicated and expensive) formal invariants, and instead uses
program paths to reason about behavior and to synthesize. Additionally, the functional behavior
of certain programs can be specified as their relation to another program, which alleviates the need
for formal descriptions of the functional specification.

The key observation that enables building synthesizers out of testing tools is that if a
program is functionally correct on a set of paths through it, then it is either correct or at least
“close to” correct for all paths. We apply this intuition to program synthesis by ensuring that
the synthesized program meets the specification on some set of paths. By increasing the number
of paths, we are able to eliminate invalid programs, until only one valid solution remains that

10

is correct for all paths explored. Additionally, we impose stronger constraints on the program
statements by testing the paths symbolically, as opposed to with concrete values. For instance, for
a program that takes x as input, instead of constraining the behavior on x = 1, x = 2, x = 3, x = 4,
and so on, we instead run the program with a symbolic value α for x, with the side condition that
α > 0. Thus, a path explored with symbolic inputs captures the behavior of the program over
multiple concrete inputs that take the same path.

Let us first describe the input to the PINS algorithm. Suppose first that we have a structure
for the unknown program and its expected specification. A structure for an unknown program
is a description of its control flow, with unknown conditional and loop guards and statements.
For the program in Example 1.5, S1; while(G){S2} is a potential structure with S1, S2, and G as
unknowns, and its expected specification is x = 2n. Not everything is required to be unknown.
Another potential template is S1; while(x ≤ n){S2}. That is, a template is a partial program in
which the synthesizer fills in the unknown holes.

We now describe the core technique behind PINS. For a given partial program, we can
choose certain paths through it and constrain that the specification is met on each of those paths.

Example 1.6 For the partial program S1; while(G){S2} we can write down constraints for three
paths, one that does not enter the loop, and two that go through the loop once and twice, as follows:

true ∧ S1 ∧ ¬G′ ⇒ x′ = 2n′

true ∧ S1 ∧G′ ∧ S′2 ∧ ¬G′′ ⇒ x′′ = 2n′′

true ∧ S1 ∧G′ ∧ S′2 ∧G′′ ∧ S′′2 ∧ ¬G′′′ ⇒ x′′′ = 2n′′′
(1.5)

Notice that every time control passes through a statement block, S1 or S2, every subsequent read
uses more primes—in line with the transition system semantics. Notice that if we had used con-
crete execution, each one of these constraints would have been expanded to multiple constraints for
particular values of the input variables that follow those paths.

The advantage of using paths to generate safety constraints is that the system need not
reason about invariants, which can potentially be very complicated. The disadvantage is that, in
the presence of loops, the number of paths is unbounded. So the approach can only be complete
up to a certain confidence level, which rises with the number of paths. With these constraints
as proxies for invariant-based safety constraints, we can use the technology already developed to
solve for the unknowns and synthesize programs.

As with any testing-based approach, we need to worry about which paths to explore. Notice
that there could be multiple programs that satisfy the constraints for a limited set of paths. For
example, the first constraint in Eq. (1.5) imposes no restrictions on S2, and therefore if we were to
only consider that constraint then all values for S2 are valid. So we need to explore more paths to
eliminate invalid programs. A naive approach would be to explore random paths, but this fails as
expected, due to combinatorial explosion. The situation is exacerbated in the presence of unknown
guards and statements.

We devise a directed path exploration scheme that infers relevant paths. A path is relevant
if it eliminates specific invalid programs from the space of solutions. The path exploration scheme
picks one solution program (which satisfies the safety constraints on paths explored until that point)
and instantiates the partial program with that solution. It then finds a path in the partial program
such that it is feasible for the instantiated program. If the chosen solution does not correspond to
a program that meets the specification, adding this new path to the system eliminates the solution
with high probability. This is the case because the path is feasible with respect to the solution
and therefore it is unlikely that the instantiated program will meet the specification if it is invalid.
On the other hand, if the chosen solution corresponds to a program that meets the specification,
then adding this new path will only reinforce the solution. Thus by iteratively selecting a solution
from the space remaining and using directed path exploration to prune out invalid programs, we
eventually narrow the space down to only the valid programs.

PINS is a general synthesis technique that works without referring to formal invariants, but
does need a formal specification. We consider its application to cases where the specification is
trivial or mechanically derivable. Consider the case of program inversion. In program inversion,

11

the sequential composition of a known program with its (unknown) inverse has the trivial identity
specification. Also, typically the structure of the inverse, but not the exact computations, is
similar to the given program. Therefore, we mine the template for the inverse and apply PINS

to automatically synthesize the precise operations of the inverse. Additionally, we also consider
parallel composition and apply PINS to automatically generate clients from servers.

Path-based inductive synthesis (PINS) shows how testing can be viable approach to program
synthesis. Intuitively, it exploits the pigeonhole principle by exploring more paths than can be
individually explained by the template, i.e., partial program. While the core approach shows that
synthesis is feasible using testing random paths, for it to be efficient in practice, a direct approach
to path exploration is required.

1.6 Engineering Verifiers and Synthesizers

In the previous sections we have gave an overview of the theoretical insights that go into
using a satisfiability-based approach (along with templates) to do expressive program verification
and even to synthesize programs. We have built the VS3—Verification and Synthesis using SMT
solvers—suite of tools that implement these ideas. While the core satisfiability-based approach
is itself novel, due to the non-traditional analysis mechanism employed this approach opens up
avenues for engineering optimization that were previously not present. We have been able to build
tools that meet, if not consistently outperform, previous tools in terms of efficiency, while being
able to handle much more expressive reasoning. We have demonstrated the proof-of-concept by
employing the VS3 tools to verify standard difficult benchmarks in verification; and for the first
time automatically synthesize programs from high level specifications.

1.7 Key Contributions and Organization

This dissertation makes the following contributions:

• We present an approach for encoding proofs for program correctness, i.e., invariants, as
(arbitrary) solutions to propositional satisfiability instances. This facilitates finding these
proofs using off-the-shelf SAT solvers. We also present extensions that allow us to encode
specification inference in the same framework.

• We show how program synthesis can be viewed as generalized program verification, thereby
allowing the use of certain automatic verifiers as automatic synthesizers. Thus, if we have a
verifier with specific properties, that can prove programs correct in a particular domain, by
this approach we have a corresponding synthesizer that can automatically generate programs
in that domain as well.

• We extend the idea of template-based analyses to expressive program reasoning and program
synthesis. Templates have two benefits. One, they make the task of the automatic tool
tractable by limiting the search for proofs, specifications, and programs to particular forms.
Note that these forms are not specific to the programs being reasoned about or synthesized,
but concern a category of programs. Two, they serve as a specification mechanism by which
the user can limit the types of proofs, specifications, or programs desired.

• We show that in the context of a template-based approach, we can synthesize programs
without formal specifications or proofs. As testing can be viewed as a means of approxi-
mate verification, in a similar vein this approach can be viewed as a means of approximate
synthesis.

Chapter dependencies While the developments in this dissertation follow an almost linear progres-
sion, each chapter starts with an overview of the key results presented therein. The dependencies
across chapters are as follows:

12

Reasoning: Linear Arithmetic

(Chapter 7)

(Chapter 8)

(Chapter 6)
Engineering Verifiers/Synthesiziers

Future Work

Related Work

(this chapter)

(Chapter 2)

(Chapter 4)

(Chapter 3)

(Chapter 5)

Introduction

Reasoning: Predicate Abstraction

Testing-inspired SynthesisVerification-inspired Synthesis

13

Chapter 2

Program Reasoning over Linear
Arithmetic

“Our path is not going to be linear or
smooth. It’s still early days.”

— Mark Fields1

In this chapter we present a satisfiability-based approach for modeling a wide spectrum
of program analyses in an expressive domain containing disjunctions and conjunctions of linear
inequalities. In particular, we show how to model the problem of context-sensitive interproce-
dural program verification. We also present the first satisfiability-based approach to maximally
weak precondition and maximally strong postcondition inference. The constraints we generate are
boolean combinations of quadratic inequalities over integer variables. We reduce these constraints
to SAT formulae using bit-vector modeling and use off-the-shelf SAT solvers to solve them.

Furthermore, we present interesting applications of the above analyses, namely bounds anal-
ysis and generation of most-general counterexamples for both safety and termination properties.
We also present encouraging preliminary experimental results demonstrating the feasibility of our
technique on a variety of challenging examples.

2.1 Using SAT Solvers for Invariant Inference

Program reasoning consists of verifying the correctness of programs or inferring pre- and
postconditions (which are semantic descriptions of program properties). The key difficulty in
program verification is the task of inferring appropriate program invariants, i.e., facts that hold at
program points whenever control reaches those points. Inferring program properties can be seen
as an extension of verification, where in addition to the invariants, the pre- or postconditions are
also inferred.

Discovering inductive program invariants is critical for both proving program correctness and
finding bugs. Traditionally, iterative fixed-point computation based techniques like data-flow anal-
yses [165], abstract interpretation [73] or model checking [99] have been used for discovering these
invariants. An alternative is to use a constraint-based invariant generation [63, 76, 43, 220] approach
that translates the second-order constraints that a program induces into first-order quantifier-free
constraints that can be solved using off-the-shelf solvers. While previous constraint-based ap-
proaches employed mathematical solvers for finding solutions to the resulting constraints [63, 76],
in this chapter we propose using SAT solvers, i.e., a satisfiability-based invariant generation ap-
proach. The last decade has witnessed a revolution in SAT/SMT based methods enabling solving of
industrial sized satisfiability instances. This presents a real opportunity to leverage these advances
for solving hard program analysis problems.

Constraint/satisfiability-based techniques offer two other advantages over fixed-point com-
putation based techniques. First, they are goal-directed and hence have the potential to be more

1American Footballer, 1972–.

14

efficient. Second, they do not require the use of widening heuristics that are used by fixed-point
based techniques and lead to loss of precision that is often hard to control.

Here, we describe satisfiability-based techniques over linear arithmetic for three classical
program analysis problems, namely program verification, maximally weak precondition generation
and maximally strong postcondition generation. Using this core framework of analyses we further
show interesting applications to bounds analysis and finding most-general counterexamples to
safety and termination properties. The key contributions are in the uniform satisfiability-based
approach to core program analyses (Sections 2.2–2.5) and their novel applications (Section 2.7).
We have also implemented these ideas in a tool that we call VS3

LIA. A distinguishing feature of
VS3

LIA is that it can uniformly handle a large variety of challenging examples that otherwise require
many different specialized techniques for analysis.

The goal of program verification is to discover invariants that are strong enough to verify
given assertions in a program. We present a satisfiability-based technique that can generate linear
arithmetic invariants with arbitrary boolean structure (Section 2.2), which also allows us to extend
our approach to a context-sensitive interprocedural setting (Section 2.3). A key idea of our ap-
proach is a scheme for reducing second-order constraints to SAT constraints; this can be regarded
as an independent contribution to solving a special class of second order formulas. Another key
idea concerns an appropriate choice of cut-set which, surprisingly, has until now been overlooked.
VS3

LIA can verify safety properties, provided as assertions, in benchmark programs that require
disjunctive invariants and sophisticated procedure summaries. These programs have appeared as
benchmarks for alternative state-of-the-art techniques. We also show how satisfiability-based in-
variant generation can be applied to verifying termination properties as well as the harder problem
of bounds analysis (Section 2.7.1).

The goal of strongest postcondition generation is to infer the most descriptive/precise post-
condition that characterizes the set of reachable states of the program. Current constraint-based
invariant generation techniques work well only in a program verification setting, where the prob-
lem enforces the constraint that the invariant should be strong enough to verify the assertions.
But in absence of assertions in programs, there is no guarantee of the precision of invariants. We
describe a satisfiability-based technique that can be used to discover strongest, or more precisely
maximally strong, invariants (Section 2.5). Some previous techniques generate precise invariants
using widening heuristics that are tailored to specific classes of programs [267, 133, 126, 127]. VS3

LIA

can uniformly discover precise invariants for all such programs.
The goal of weakest precondition generation is to infer the least restrictive precondition that

ensures validity of all assertions in the given program. We present a satisfiability-based technique
for discovering weakest, or more precisely maximally weak, preconditions (Section 2.4). VS3

LIA can
generate maximally weak preconditions of safety as well as termination properties for difficult
benchmark programs. We do not know of any previous tool that can infer these properties for the
programs we consider.

We also describe an interesting application of maximally weak precondition generation: gen-
erating most-general counterexamples for both safety (Section 2.7.2) and termination (Section 2.7.3)
properties. The appeal of generating most-general counterexamples (as opposed to generating any
counterexample) lies in characterizing all counterexamples in a succinct specification that provides
better intuition to the programmer. For example, if a program has a bug when n > 200∧9 > y > 0,
then this information is more useful than simply generating any particular counterexample, say
n = 356∧y = 7 (Figure 2.11). We have also successfully applied VS3

LIA to generate counterexamples
to termination of programs (taken from recent work [143]).

2.2 Program Verification

Given a program with some assertions, the program verification problem is to verify whether
the assertions are valid. The challenge in program verification is to discover the appropriate
invariants at different program points, especially inductive loop invariants, that can be used to
prove the validity of the given assertions. (The issue of discovering counterexamples, in case the

15

PV2 () {
x := −50;
while (x < 0) {

x := x+ y;
y++;

}
assert(y > 0)

}

y > 0

true

x < 0

x := x+ y
y++

Y
N

I

x := −50

(a) (b)

∀x,yφ(I):
true ⇒ I[−50/x]

I ∧ x < 0 ⇒ I[(y+1)/y, (x+y)/x]
I ∧ x ≥ 0 ⇒ y > 0

(c)

Figure 2.1: Illustrating program reasoning over linear arithmetic using an example. (a) Simple
example with loop invariant (at the header node) I (b) the control flow graph and (c) the corre-
sponding constraint. The satisfying solution (x < 0 ∨ y > 0) to the constraint is disjunctive.

assertions are not valid, is addressed in Section 2.7.2).

Program model In this chapter, we consider programs that have linear assignments, i.e., assign-
ments x := e where e is a linear expression, or non-deterministic assignments x :=?. We also allow
for assume and assert statements of the form assume(p) and assert(p), where p is some boolean
combination of linear inequalities e ≥ 0. Here x denotes some program variable that takes integral
values, and e denotes some linear arithmetic expression. Since we allow for assume statements,
without loss of generality, we assume that all conditionals in the program are non-deterministic.

2.2.1 Verification Conditions: Program semantics as constraints

In this section, we describe encoding the semantics of programs as logical constraints. The
problem of program verification can be reduced to the problem of finding solutions to a second-order
constraint. The second-order unknowns in this constraint are the unknown program invariants that
are inductive and strong enough to prove the desired assertions. In this section we describe the
conversion of programs to constraints.

Consider the program in Figure 2.1(a) with its control flow graph in Figure 2.1(b). The
program precondition is true and postcondition is y > 0. To prove the postcondition, at some
point in the loop such as the one shown, we need to find an invariant I. There are three paths in
this system that constrain I. The first is the entry case meaning the path from true to I. The
second is the inductive case meaning the path that starts and ends at I and goes around the loop.
The third is the exit case meaning the path from I to y > 0. Figure 2.1(c) shows the corresponding
constraints. We now show how to construct these constraints formally.

The first step is to choose a cut-set. A cut-set is a set of program locations (called cut-
points) such that each cycle in the control flow graph passes through some program location in the
cut-set. One simple way to choose a cut-set is to include all targets of back-edges in any depth first
traversal of the control-flow graph. (In case of structured programs, where all loops are natural
loops, this corresponds to choosing the header node of each loop.) However, as we will discuss in
Section 2.2.4, some other choices of cut-set might be more desirable from an efficiency/precision

16

viewpoint. For notational convenience, we assume that the cut-set always includes the program
entry location πentry and exit location πexit.

We then associate each cut-point π with a relation Iπ over program variables that are live
at π. The relations Iπentry

and Iπexit
at program’s entry and exit locations, respectively, are set to

true, while the relations at all other cut-points are unknown relations that we seek to discover.
Two cut-points are adjacent if there is a path in the control flow graph from one to the other
that does not pass through any other cut-point. We establish constraints between the relations at
adjacent cut-points π1 and π2 as follows. Let Paths(π1, π2) denote the set of paths between π1

and π2 that do not pass through any other cut-point. We use the notation VC(π1, π2) to denote
the constraint that the relations Iπ1

and Iπ2
at adjacent cut-points π1 and π2 respectively are

consistent with respect to each other:

VC(π1, π2) = ∀X

 ∧
p∈Paths(π1,π2)

(Iπ1
⇒ ω(p, Iπ2

))

Above, X denotes the set of program and fresh variables that occur in Iπ1

and ω(p, Iπ2
). The

notation ω(p, I) denotes the weakest liberal precondition [93, 131] of path p (which is a sequence
of program instructions) with respect to I:

ω(skip, I) = I ω(assume p, I) = p⇒ I
ω(x := e, I) = I[e/x] ω(assert p, I) = p ∧ I
ω(x :=?, I) = I[r/x] ω(S1;S2, I) = ω(S1, ω(S2, I))

where r is a fresh variable and the notation [e/x] denotes substitution of x by e. Until the step
where the invariant is instantiated as a template, the substitutions need to be accumulated and
deferred.

Alternatives to substitution
Here, we present substitution as the means of backwards reasoning, i.e., applying Hoare’s axiom
for assignment [150]. It is instructive to note that substitution is not a logical primitive, and
consequently, invariant inference using theorem provers (that work over a specific logic) can
potentially be complicated by the presence substitution. Fortunately, by assuming a template
for the invariants, substitution into them is feasible.
Using substitution is not critical to the developments in this dissertation. For the rest of the
chapter, we will be agnostic to the mechanism used for reasoning about assignment, either
backwards using Hoare’s assignment rule and templates to substitute into, or forwards using
equality predicates (with variable versions, like in single static assignment (SSA)—developed
for compiler optimizations by Wegman, Zadeck, Alpern, Rosen [4, 231]—or symbolic execu-
tion [166]). In fact, in all subsequent chapters, we will use equality predicates because of two
reasons. First, it alleviate the inconvenience of substituting into unknowns, and second, for the
case of synthesis the variable being assigned to is also unknown. We describe this approach in
more detail in Chapter 3, Section 3.3.3.

Let π1, π2 range over pairs of adjacent cut-points. Then any solution to the unknown
relations Iπ in the following verification constraint (which may also have substitutions) yields a
valid proof of correctness.

∧
π1,π2

VC(π1, π2) (2.1)

This constraint is implicitly universally quantified over the program variables and is a function of
~I (the vector of relations Iπ at all cut-points including Iπentry , Iπexit). We therefore write it as the

verification condition ∀X.φ(~I). For program verification Iπentry and Iπexit are set to true. Going
back to the example, the second-order constraints corresponding to the program in Figure 2.1(a)
are shown in Figure 2.1(c) and correspond to the entry, inductive, and exit constraints for the
loop.

17

2.2.2 Template specification T

We define the notion of a template specification T over linear arithmetic inequalities inside
arbitrary boolean conjunctions and disjunctions. For the sake of simplicity and without loss of gen-
erality, we assume that the template is expressed in disjunctive normal form (DNF) and negations
are at the innermost level, and can therefore be encoded in the linear term by appropriate ma-
nipulations. In later chapters, we will use a more expressive template, e.g., containing quantifiers
(Chapter 3), and even templates for control flow of programs (Chapter 4).

For the purposes of this chapter, a template specification consists of two elements. The first
is the boolean DNF structure, indicated by template(T), and is just a pair of integers (d, c) that
indicate there are d disjuncts in the formula with c conjuncts each. The second is the maximum
size of constants represented in binary format, indicated by bvsize(T).

Example 2.1 Consider the template specification T with template(T) = (3, 2) and bvsize(T) = 11
for a program with program variables x, y. In this case the general form of invariants for this
template specification is: ∨

j=1..3

(cj0 + cj1x+ cj3y ≥ 0) ∧ (cj4 + cj5x+ cj6y ≥ 0)

where the cj0..6’s are the constants in the jth disjunct and can represent integers between −1024
and 1023 with a two’s complement representation using 11 bits.

2.2.3 Constraint solving

In this section we show how to solve the second-order constraint from Eq. 2.1 that represents
the verification condition of unknown relations at cut-points. The key idea is to reduce the second-
order constraint into a boolean formula such that a satisfying assignment to the formula maps to a
satisfying assignment for the second-order constraints. Throughout this section, we will illustrate
the reductions for the constraints in Figure 2.1(c).

For simple examples, fixed-point based techniques like abstract interpretation can be used to
discover the unknown invariants Iπ. Recently, for the case of conjunctive invariants, use of Farkas’
Lemma has been proposed [63] to remove universal quantifiers from the verification condition in
Eq. 2.1 to yield a tractable system of constraints. From basic linear programming we know:

Lemma 2.1 (Farkas’ Lemma [106, 238]) A satisfiable system of linear inequalities ∧iei ≥ 0
implies an inequality e ≥ 0 if and only if there exists a non-negative λ0 and λi’s such that λ0 +∑
i λiei = e.

The novelty of our constraint solving approach is three-fold. We first assume invariant
templates (possibly disjunctive) and then we reduce the program verification condition (possibly
involving disjunctions) to unsatisfiability constraints over the parameters of the templates (Step
1). We restate and apply Farkas’ Lemma in a form suitable for handling unsatisfiability constraints
(Step 2). Instead of using specialized mathematical solvers [63, 76], we use bit-vector modeling to
reduce the constraints to SAT formulae that can be solved using off-the-shelf SAT solvers (Step 3).
Despite having disjunctive templates, the constraint formulae generated for program verification
are conjunctive. This will not be the case for more sophisticated analyses, as we will see later.

Step 1 First, we convert second-order unknowns to first-order unknowns. Instead of searching for a
solution to unknown relations (which are second-order entities) from an arbitrary domain, we
restrict the search to a template that is some boolean combination of linear inequalities among
program variables. For example, an unknown relation can have the template (

∑
i

aixi ≥

0 ∧
∑
i

bixi ≥ 0) ∨ (
∑
i

cixi ≥ 0 ∧
∑
i

dixi ≥ 0), where ai, bi, ci, di are all unknown integer

constants and xi are the program variables. The template can either be provided by the
user (for example, by specifying the maximum number of conjuncts and disjuncts in DNF

18

representation of any unknown relation), or we can have an iterative scheme in which we
progressively increase the size of the template until a solution is found. Given such templates,
we replace the unknown relations in the constraint in Eq. 2.1 by the templates and then apply
any substitutions present in the verification condition, to obtain a first-order logic formula
with unknowns that range over integers.

For the example in Figure 2.1(a), a relevant invariant template is a1x+ a2y+ a3 ≥ 0∨ a4x+
a5y + a6 ≥ 0, where the ai’s are (integer) unknowns to be discovered. If the chosen domain
for the template is not expressive enough then the constraints will be unsatisfiable. On the
other hand if there is redundancy then redundant templates can always be instantiated with
true or false as required. This step of the reduction translates the verification condition
in Figure 2.1(c) with unknown I to unknowns ai’s, e.g. the first constraint in Figure 2.1(c)
after Step 1 is true⇒ (−50a1 + a2y + a3 ≥ 0) ∨ (−50a4 + a5y + a6 ≥ 0).

Step 2 Next, we translate first-order universal to first-order existential quantification using Farkas’
Lemma (at the cost of doing away with some integral reasoning). Farkas’ Lemma implies
that a conjunction of linear inequalities ei ≥ 0 (with integral coefficients) is unsatisfiable over
reals iff some non-negative (integral) linear combination of ei yields a negative quantity, i.e.,

∀X

(
¬(
∧
i

ei ≥ 0)

)
⇐⇒ ∃λ > 0, λi ≥ 0

[
∀X

(∑
i

λiei ≡ −λ

)]

The reverse direction of the above lemma is easy to see since it is not possible for a non-
negative linear combination of non-negative expressions ei to yield a negative quantity. The
forward direction also holds since the only way to reason about linear inequalities over reals
is to add them, multiply them by a non-negative quantity, or add a non-negative quantity.

The universal quantification in the right hand side of the above equivalence is over a poly-
nomial equality, and hence can be eliminated by equating the coefficients of the program
variables X on both sides of the polynomial equality.

We can convert any universally quantified linear arithmetic formula ∀X(φ) into an exis-
tentially quantified formula using Farkas’ Lemma as follows. We convert φ to conjunctive
normal form

∧
i

φi, where each conjunct φi is a disjunction of inequalities
∨
j

eji ≥ 0. Observe

that ∀X(φ) =
∧
i

∀X(φi) and that φi can be rewritten as ¬
∧
j

(−eji − 1 ≥ 0). Hence, Farkas’

Lemma, as stated above, can be applied to each ∀X(φi).

We illustrate the application of this step over the first constraint from Figure 2.1(c), which
we obtained after Step 1. After Step 1 we have true ⇒ e1 ≥ 0 ∨ e2 ≥ 0 (where e1 ≡
−50a1+a2y+a3 ≥ 0 and e2 ≡ −50a4+a5y+a6 ≥ 0 as obtained earlier). After expanding the
implication we get a constraint that is already in CNF form, and therefore the corresponding
unsatisfiability constraint is ¬((−e1 − 1 ≥ 0) ∧ (−e2 − 1 ≥ 0)). Farkas’ Lemma can now
be applied to yield ∃λ1, λ2 ≥ 0, λ > 0(∀x,yλ1(−e1 − 1) + λ2(−e2 − 1) ≡ −λ). Now we
can collect the coefficients for x, y to get a first-order existential constraint. Notice that λ1

(respectively λ2) is multiplied with the coefficients inside e1 (respectively e2), and therefore
this is a multi-linear quadratic constraint over integers. Equating the coefficients of x, y and
the constant term we get the constraints: (50a1λ1− a3λ1−λ1) + (50a4λ2− a6λ2−λ2) = −λ
and a2λ1 + a5λ2 = 0.

Farkas’ Lemma applies to reals and its application leads to a loss of completeness as we do
away with integral reasoning. For example, Farkas’ Lemma cannot help us prove unsatisfia-
bility of 3x ≥ 1∧2x ≤ 1 with x ranging over integers. Farkas’ Lemma would check that there
exist satisfying values for x, namely 1

3 ≤ x ≤ 1
2 . While there is a discrete version of Farkas’

Lemma [182], it involves solving an explicit linear programming problem of fixed dimension,
and we find the added complexity too expensive. We find that this loss of completeness in
using the real version of Farkas’ Lemma is not a hindrance in any of our examples.

19

Step 3 Next, we convert first-order existential (or quantifier-free) to SAT. The formulas that we
obtain from the above step are (multi-linear quadratic polynomials) over integer variables.
We convert these formulas into SAT formulas by modeling integer variables as bit vectors
and encode integer operations like arithmetic, multiplication, and comparison as boolean
operations over bit vectors.

Properties of satisfiability-based invariant generation Our approach to constraint solving is sound
in the sense that any satisfying solution to the SAT formula yields a valid proof of correctness.
However, it is not complete, i.e., there might exist a valid proof of correctness but the SAT formula
might not be satisfiable. This is expected since program verification in general is an undecidable
problem, and no algorithm can be both sound and complete. These properties are formalized by
the following theorem.

Theorem 2.1 (Soundness and Relative Completeness) Let an inductive invariant exist that
proves the program assertions, and let φT (vc) be the SAT formula generated using Steps 1,2, and
3 over the verification condition vc using a template specification T (defined in Section 2.2.2).
Then, any satisfying solution to φT (vc) corresponds to an inductive invariant (soundness), and
φT (vc) is satisfiable (relative completeness) as long as:

1. An inductive invariant exists as an instantiation of the template specification T , i.e., we can
get the invariant by instantiating the coefficients in template(T) using integers representable
using bit vectors of maximum size bvsize(T).

2. Every implication in vc can be discharged without using properties of integers, i.e., without
integral reasoning.

Proof: From the soundness and completeness (up to termination) of verification condition
generation [93, 269] we know that if an inductive invariant exists, it will be a solution to the
verification condition vc constructed using Eq. 2.1. We just need to ensure that φT (vc) has the
same solutions, up to difference in representation, as vc. We prove each direction in turn:

• Soundness If φT (vc) has a satisfying boolean solution, then from the soundness of the bit-
vector encoding in Step 3, we know that it corresponds to an integral solution to the linear
equations after Step 2. By Farkas’ Lemma, we know that a satisfying solution to λ0, λi’s,
and the invariants exists only if the vc implications are satisfied when we substitute the
invariant in them. Given that we have a satisfying solution it means that the solution is also
a solution to vc.

• Relative completeness If an inductive invariant exists then it has to be a solution to vc. By
assumption 1 above, the invariant is an instantiation of template(T). Therefore after the
substitution in Step 1 the constraints have the same set of satisfying solutions as vc. By
Farkas’ Lemma, we know that the integer constraints after Step 2 have a satisfying solution
if vc has a satisfying solution, i.e., the invariant. By assumption 2 above, we also know that
no property of integers over reals is required and consequently, Step 2 retains all satisfying
solutions. By assumption 1 above, we know that each integer coefficient in the invariant
can be represented using bvsize(T) bits and consequently the bit-vector encoding of Step
3 retains all solutions as well. (We assume that the λ’s required are sufficiently small, i.e.,
their absolute values are less than 2bvsize(T)−1, so that they can be encoded safely too. If
this assumption is not valid then they can be chosen to be of arbitrarily large size.) Thus vc
is satisfiable only if φT (vc) is satisfiable under the assumption 1 and 2 above.

�

We have found that the completeness assumptions do not hinder invariant inference in
practice. The right templates are easily found by iterative guessing, easily mechanized if required,

20

and most programs stick to reasoning that is equally valid over reals as over integers. The real
challenge instead lies in finding the satisfiability assignment for the SAT formula, for which the
recent engineering advances in SAT solvers seem to stand up to the task.

2.2.4 Choice of cut-set

The choice of a cut-set affects the precision and efficiency of our algorithm—and in fact, of
any other technique with similar objectives. We find that the choice of a cut-set has significant
bearing on expressivity but has been seriously under-studied. A recent proposal [30] performs
fixed-point computation on top of a constraint-based technique to regain precision, which we claim
was lost in the first place because of a non-optimal choice of cut-set. In this section, we describe
a strategy for choosing a cut-set that strikes a good balance between precision and efficiency.

From the definition of a cut-set, we know that we need to include some program locations
from each loop into the cut-set. A simple choice for the cut-set includes all header nodes (or targets
of back-edges) as cut-points, and is the typical approach. This cut-set, which we will refer to as
Chead, necessitates searching/solving for unknown relations over disjunctive relations when the
proof of correctness involves a disjunctive loop invariant. It is interesting to note that for several
programs that require disjunctive loop invariants, there is another choice for cut-set that requires
searching for unknown relations with fewer disjuncts, or even only conjunctive.

This expressive cut-set Cprecise that minimizes disjunctive relations corresponds to choosing
one cut-point on each disjoint path inside the loop. Notice that such a choice may not correspond
to any assignment of cut-points to syntactic program locations. Consider the case of multiple
conditionals in sequence inside a loop, in which case in the proof, which refers to the cut-points,
we need to expand the control flow inside the loop. For example, two conditionals in sequence give
rise to four cut-points corresponding to the four disjoint paths, but only when the control flow is
expanded can these four points be identified. This cut-set leads to the greatest precision in the
following sense.

Theorem 2.2 (Best cut-set) Let Cprecise be a cut-set that includes a cut-point on each acyclic
path inside a loop (after expansion of control flow into disjoint paths). For invariants within a given
template specification T (with arbitrarily large coefficients as required), if there exists a solution
for some cut-set, then there exists a solution for Cprecise.

Proof: Suppose there exists a solution to the relations (of a specified boolean structure) in
some cut-set C ′. We show that a solution will exist in the cut-set Cprecise. Let pi be the
disjoint paths inside the loop (for the cut-set Cprecise) and p′i be the disjoint paths on which the
unknown relations I ′i are found for cut-set C ′. Notice that in C ′ there may be more than one
cut-point on each path. As mentioned earlier, for an acyclic path, a relation at any point on
the path can be easily translated to any other point, and therefore we ignore multiple relations
on the same path. Also, by the definition of a cut-set each path through the loop has to have
a cut-point.

We construct a solution to the relations in Cprecise as follows: For each disjoint path pi which
has a relation I ′i in C ′ we assign the relation I ′i. For paths pi and pj that are disjoint in Cprecise
but treated as a single path pij with invariant I ′ij in C ′ we assign the same relation I ′ij to
both paths. It is trivial to see that this invariant will be a valid one. Therefore, there exists a
solution for the cut-set Cprecise.

�

Furthermore, there are several examples that show that the reverse direction in Theorem 2.2 is
not true, i.e., for a given template structure for the unknown relations, there exists a solution with
cut-set Cprecise but there is no solution with other choices of cut-sets. This is illustrated by the
example in Figure 2.2 and discussed in Section 2.2.5.

While choosing Cprecise does give us the most expressivity for a given template specification,
it also inserts the most number of unknown relations, which can be expensive to infer. The cut-set

21

PV1() {
1 x := 0; y := 0;
2 while (true) {
3 if (x ≤ 50)
4 y++;
5 else

6 y--;
7 if (y < 0)
8 break;

9 x++;
10 }
11 assert(x = 102)
}

Figure 2.2: Program verification example, from work on widening techniques by Gopan and
Reps [126], that requires a disjunctive invariant at the loop header. But a clever choice of cut-set
leads to conjunctive invariants.

Chead is at the other end least expensive and least expressive in this regard. Therefore we balance
expressivity and expensiveness by picking cut-sets between the two extremes of Cprecise and Chead,
experimentally.

Experimental heuristic strategy for choosing cut-set If the loop body has few conditionals in
sequence, then we choose the strategy which has the best chance of yielding a proof of correctness
over a fixed unknown invariant template, as described in Theorem 2.2. However, this scheme can
be costly if the loop body has several sequential conditionals since the number of acyclic paths
inside the loop is exponential in the number of sequential conditionals inside the loop. Hence, in
such a case we choose multiple join points inside the loop, each separated by a few conditionals,
as the cut-points.

2.2.5 Examples

Consider the example shown in Figure 2.2. Let πi denote the program point that immediately
precedes the statement at line i in the program. The simplest choice of cutpoint corresponds to
the loop header at π2. The inductive invariant that is needed, and is discovered by our tool, is
the disjunction (0 ≤ x ≤ 51 ∧ x = y) ∨ (x ≥ 51 ∧ y ≥ 0 ∧ x + y = 102). Typically programs work
in phases [126] and the disjunctions in the invariants have predicates from the conditionals that
split the phases. Notice that they are also syntactically differentiable in terms of the disjoint paths
inside the loop.

Conjunctive invariants are easier to discover, and we now show how such programs can be
handled more efficiently by discovering a set of conjunctive invariants instead of a single disjunctive
one. In particular, if the cut-set was chosen to be {π4, π6} then the inductive invariant map is
indeed conjunctive. Our algorithm discovers the inductive invariant map {π4 7→ (y ≥ 0 ∧ x ≤
50 ∧ x = y), π6 7→ (y ≥ 0 ∧ x ≥ 50 ∧ x + y = 102)}. We can verify that this invariant map is
indeed inductive. The interesting cases are for paths starting from π4 and ending at {π4, π6}. It
is trivial to verify the path that ends at the same location. The path from π4 to π6 is non-trivial
only for the case during the transition between the phases, which happens when x = y = 50 at π4

and therefore x = y = 51 at π6. For this program the meaningful paths starting from π6 only end
at the same location because the program does not alternate between phases. But if it did then a
case similar to π4 would arise.

A wide variety of techniques based on fixed point computation and CFG elaboration [126,
30, 233] exist for the programs whose invariants lend themselves to such partitioning, and therefore
it is no surprise that they can be efficiently handled using our cut-set optimization. We go further
by not committing ourselves to conjunctive invariants for the individual phases. If some phase

22

of the program was more complicated, possibly requiring disjunctions itself, then even the best
choice of the cut-set would leave some disjunctive invariants to be discovered. Our technique is not
constrained to handle just conjunctive invariants. Disjunctive invariants, which are very difficult
to discover using previous approaches, are easily found in our framework.

The example in Figure 2.1(a) has no phases and no conditionals inside the loop, and the
only inductive invariant describing the loop, x < 0 ∨ y > 0, is disjunctive and is discovered by
our technique. Heuristic proposals for handling disjunction [233, 30] will fail to efficiently discover
invariants for such programs.

2.3 Interprocedural Analysis

The ω computation described in previous section is applicable only in an intraprocedural
setting. In this section, we show how to extend our satisfiability-based technique to precise (i.e.,
context-sensitive) interprocedural analysis.

Precise interprocedural analysis is challenging because the behavior of the procedures needs
to be analyzed in a potentially unbounded number of calling contexts. Procedure inlining is one
way to do precise interprocedural analysis. However, there are two problems with this approach.
First, procedure inlining may not be possible at all in presence of recursive procedures. Second,
even if there are no recursive procedures, procedure inlining may result in an exponential blowup
of the program. For example, if procedure P1 calls procedure P2 twice and procedure P2 calls
procedure P3 twice, then procedure inlining would result in four copies of procedure P3 inside
procedure P1. In general, leaf procedures can be replicated an exponential number of times.

A more standard way to do precise interprocedural analysis is to compute procedure sum-
maries, which are relations between procedure inputs and outputs. More specifically, these sum-
maries are usually structured as sets of pre/postcondition pairs (Ai, Bi), where Ai is some re-
lation over procedure inputs and Bi is some relation over procedure inputs and outputs. The
pre/postcondition pair (Ai, Bi) denotes that whenever the procedure is invoked in a calling con-
text that satisfies constraint Ai, the procedure ensures that the outputs will satisfy the constraint
Bi. However, there is no automatic recipe to efficiently construct or even represent these procedure
summaries, and abstraction-specific techniques may be required. Data structures and algorithms
for representing and computing procedure summaries have been described over the abstractions
of linear constants [232] and linear equalities [205]. Recently, some heuristics have been described
for the abstraction of linear inequalities [239].

In this section, we show the satisfiability-based approach is particularly suited to discovering
such useful pre/postcondition (Ai, Bi) pairs. The key idea is to observe that the desired behavior
of most procedures can be captured by a small number of such (unknown) pre/postcondition pairs.
We then replace the procedure calls by these unknown behaviors and assert that the procedure
has such behaviors, as in assume-guarantee style reasoning. Assume-guarantee reasoning has been
used for modular reasoning [160, 217] about components of a program under assumptions that
the components make about their environment. These assumptions are then discharged when
modularly reasoning about other components that use it.

For ease of presentation and without loss of generality, let us assume that a procedure does
not read/modify any global variables; instead all global variables that are read by the procedure
are passed in as inputs, and all global variables that are modified by the procedure are returned
as outputs. Our tool VS3

LIA does this automatically and can handle globals seamlessly. We now
describe the steps of our interprocedural analysis algorithm.

We first assume that there are q interesting calling contexts for procedure P (~x){S; return ~y; }
with the vector of formal arguments ~x and vector of return values ~y. The value of q can be iter-
atively increased until invariants are found that make the constraint system satisfiable. Then, we
summarize the behavior of each procedure using q tuples (Ai, Bi) for 1 ≤ i ≤ q, where Ai is some
relation over procedure inputs ~x, while Bi is some relation over procedure inputs and outputs ~x
and ~y. We assert that this is indeed the case by generating constraints for each i as below and

23

asserting their conjunction:
assume(Ai); S; assert(Bi) (2.2)

We compile away procedure calls ~v := P (~u) on any simple path by replacing them with the
following code fragment:

~v :=?; assume

(∧
i

(Ai[~u/~x]⇒ Bi[~u/~x,~v/~y])

)
; (2.3)

The correctness of this encoding follows directly from the correctness of tabula-tion-based
procedure summary computation [74], i.e., summaries that explicitly state an abstract relations
on the inputs as output, as studied for dataflow analysis over finite lattices [242], and even for
some infinite domains [227]. In this section, we have considered abstract, but explicit, pre- and
postcondition facts, unlike some previous approaches [135, 274] that use symbolic constants to
generalize the summaries. The advantage of our approach here is that it is goal-oriented, and
computes only those facts in the summary that are required for the analysis of call locations. Such
a luxury was not afforded by previous dataflow approximation techniques, which had to compute
the most precise facts because they either analyzed in a forwards or backwards direction, but not
both. We will revisit summary computation again in Section 2.6 where we attempt to compute
the most precise summaries possible.

Observe that in our approach, there is no need, in theory, to have q different pre/postcondition
pairs. In fact, the summary of a procedure can also be represented as some formula φ(~x, ~y) (with
arbitrary Boolean structure) that represents a relation between procedure inputs ~x and outputs ~y.
In such a case, we assert that φ indeed is the summary of procedure P by generating constraint
for {S; assert(φ(~x, ~y))}, and we compile away a procedure call ~v := P (~u) by replacing it by the
code fragment ~v :=?; assume(φ[~u/~x,~v/~y]).

However, in practice, our approach of maintaining symbolic pre/post pairs (which is also
inspired by the data structures used by the traditional fixed-point computation algorithms) is
more efficient since it enforces more structure on the assume-guarantee proof and leads to fewer
unknown quantities and simpler constraints. In particular, by assuming a template for Ai that is
only in terms of the procedure inputs, we ensure that the solver cannot prove ¬Ai at the beginning
of the procedure. (Otherwise along-with assume(Ai) in Equation (2.2) it could prove false, and
any arbitrary consequence Bi would follow.)

Optimization If there are a small number qsmall of static procedure calls, then we can replace the
ith procedure call ~v := P (~u) by

assert(Ai[~u/~x]);~v :=?; assume(Bi[~u/~x,~v/~y])

where 1 ≤ i ≤ qsmall. This approach is somewhat akin to inlining, as each ith calling context’s
behavior is encoded by a separate (Ai, Bi), while being able to handle recursion (if the recursive
call can be succinctly described using some (Ak, Bk)). Also, note that there is loss of context-
sensitivity in this approach, as syntactic call locations are assumed to be describable using a single
summary. For instance, consider a call inside a loop whose behavior is dependent on the loop
iterator. This optimization will fail to verify such behavior, while the unoptimized encoding will
work. So while this approach may be more efficient for certain cases, in general, we do not use it.

Examples Consider the example shown in Figure 2.3(a). Our algorithm verifies the assertion
by generating the summary i ≥ 0 ⇒ ret = i + j for procedure Add. This example illustrates
that only relevant summaries are computed for each procedure. In addition to serving as the
base case of the recursion the true branch of the condition inside Add has the concrete effect
i < 0 ⇒ ret = j. But this behavior is not needed to prove any assertion in the program and
is therefore automatically suppressed (in that the tool proves the assertions without it) by our
goal-oriented summary computation. This example illustrates that our tool finds any summary,
not necessarily the weakest, for a procedure that is useful for proving program assertions.

24

IP1() {
x := 5; y := 3;
result := Add(x, y);
assert(result = 8);

}
Add(int i, j) {

if i ≤ 0
ret := j;

else

b := i− 1;
c := j + 1;
ret := Add(b, c);

return ret;

}

IP2() {
result :=M(19)+M(119);

assert(result = 200);
}
M(int n) {

if(n > 100)
return n− 10;

else

return M(M(n+ 11));
}

(a) (b)

Figure 2.3: Interprocedural analysis examples (a) taken from previous approaches to summary
computation [239, 206] (b) McCarthy 91 function [194, 193, 190] requires multiple summaries.

int G;
IP3(int n) {

assume(n ≥ 1);
G := 0;
QSort(0, n);
assert(G ≤ 2n+ 3);

}
QSort(int l, r) {
G++;
if (r > l)

assume(l ≤ m ≤ r);
QSort(l,m− 1);
QSort(m+ 1, r);

}

IP4(int x1, x2) {
x3 := 3× x2 − 2;
x1 := F (x1, x2, x3);
assert(x1 = 3x2 − 2);

}
F(int y1, y2, y3) {

if (*)

ret := 3× y2 − 2;
else

ret := F (y1, y3, y2);
return ret;

}

(a) (b)

Figure 2.4: Context-sensitive interprocedural analysis examples (a) over recursive functions [239]
and (b) possibly non-terminating function [206].

The procedure M(int n) in Figure 2.3(b) is the McCarthy91 function—proposed by Mc-
Carthy, Manna and Pnueli [193, 194, 192] as a challenge problem in recursive program verification—
which can be precisely described by the summaries n > 100 ⇒ ret = n − 10 and n ≤ 100 ⇒
ret = 91. The function has often been used as a benchmark test for automated program
verification. The goal-directed nature of the verification problem allows our analyzer to derive
n = 119 ⇒ ret = n − 10 and n ≤ 100 ⇒ ret = 91 as the summary, which proves the program
assertion. As such, the tool discovers only as much as is required for the proof. For the summary
with the antecedent n ≤ 100 no such simplification exists, and the tool discovers the most precise
consequence such that the invariant is inductive.

Consider the example shown in Figure 2.4(a). The assertion in the program needs to be
verified for timing/bounds analysis of the quicksort procedure (Section 2.7.1). G is a global variable
that is incremented every time the function is called. For each procedure call, Gin and Gout refer
to the value of the global before and after the procedure call, respectively. Our algorithm generates
the summary l − r ≤ 1⇒ Gout −Gin ≤ 2(r − l) + 3 for the procedure QSort.

Consider the example shown in Figure 2.4(b), which contains a potential infinite recursive
call inside F, and also swaps the value stored in y2 and y3 between calls. Thus an iterative

25

refinement scheme that recursively analyses sub-procedures may not terminate. On the other
hand, our algorithm verifies that if the procedure terminates, then it output values that satisfy the
program assertions. (If the procedure does not terminate then the assertion is trivially satisfied.)
Our tool VS3

LIA generates the summary y3 = 3y2− 2⇒ ret = y3 for procedure F which verifies the
assertion.

Corollary 2.1 If there exist q summaries (Ai, Bi)i=1..q with which the assertions in the program
are verified, then our encoding generates a SAT instance whose solution corresponds to the q
summaries.

Proof: The proof is a direct consequence of the soundness of our constraint encoding (Theo-
rem 2.1) and the soundness of our interprocedural tabulation-based summary computation [74,
242, 227].

�

2.4 Maximally weak Precondition

Given a program along with some assertions, the problem of weakest precondition generation
is to infer the weakest precondition Iπentry

that ensures that whenever the program is run in a state
that satisfies Iπentry

, the assertions in the program hold. In Section 2.7 we show that a solution to
this problem will be a powerful tool for a wide range of applications.

In this section, we present a satisfiability-based approach for inferring an approximation
to weakest preconditions under a given template. Since a precise solution to this problem is
undecidable, we work with a relaxed notion of weakest precondition, namely maximally weak
precondition. For a given template structure T (as described in Section 2.2.3 for invariants), we
say that A is a maximally weak precondition if A is an instantiation of T , and there is no valid
precondition proving the program assertions that is comparable to and weaker than A within the
same template.

The first step to a satisfiability-based approach to maximally weak preconditions is to treat
the precondition Iπentry

as an unknown relation in Eq. 2.1. This is unlike program verification, where
we set Iπentry

to be true. However, this change merely encodes that any consistent assignment to
Iπentry

is a valid precondition, not necessarily the weakest or maximally weak one. In fact, when we
run our tool with this change, it returns false, which is always a valid precondition, as a solution
for Iπentry

.
One approach to finding the maximally weak precondition may be to search for a pre-

condition that is strictly weaker than the current solution (by adding a weakness constraint to
Eq. 2.1) and to iterate until no such precondition exists. However, in practice this approach
make slow progress. For Figure 2.5(a), which we discuss below, this technique iteratively pro-
duced i ≥ j + 127, i ≥ j + 126, . . . , i ≥ j as preconditions, under a modeling that used 8-bit
two’s-complement integers. In general this näıve iterative technique will be infeasible. We need to
augment the constraint system to encode the notion of a maximally weak relation.

We can encode that Iπentry
is a maximally weak precondition as follows. The verification

condition in Eq. 2.1 can be regarded as function of two arguments Iπentry
and Ir, where Ir denotes

the relations at all cut-points except at the program entry location, and can thus be written as
∀X.φ(Iπentry

, Ir). Now, for any other relation I ′ that is strictly weaker than Iπentry
, it should be the

case that I ′ is not a valid precondition. This can be stated as the following constraint.

∀X.φ(Iπentry
, Ir) ∧

∀I ′, I ′r
(
weaker(Iπentry

, I ′)⇒ ¬∀X.φ(I ′, I ′r)
)

where weaker(Iπentry
, I ′)

def
= (∀X.(Iπentry

⇒ I ′) ∧ ∃X.(I ′ ∧ ¬Iπentry
)).

The trick of using Farkas’ Lemma to get rid of universal quantification (Step 2 in Sec-
tion 2.2.3) cannot be applied here because there is existential quantification nested inside univer-
sal quantification. We now consider examples of maximally weak preconditions that we expect

26

WP1(int i, j) {
x := y := 0;
while (x ≤ 100) {

x := x+ i;
y := y + j;

}
assert(x ≥ y)

}

Merge(int m1,m2,m3) {
assert(m1,m2 ≥ 0)
k := i := 0;
while (i < m1) {

assert(0 ≤ k < m3)
A[k++] = B[i++];

}
i := 0;
while (i < m2) {

assert(0 ≤ k < m3)
A[k++] = C[i++];

}
}

(a) (b)

Figure 2.5: Maximally weak precondition examples.

to—and indeed do—infer. In the following section we will describe our novel iterative approach to
maximally weak precondition inference.

Examples For the procedure in Figure 2.5(a), our algorithm generates two different preconditions
that individually ensure that the program assertion holds: (i) (i ≥ j) ensures that if the loop
terminates then x ≥ y, and (ii) (i ≤ 0) ensures that the loop never terminates making the assertion
unreachable and therefore trivially true.

Notice how each of these preconditions is maximally weak by themselves. For instance,
while i ≥ j is a valid precondition, i ≥ j − 1, which is strictly weaker, is not. Additionally, i ≥ j
and i ≤ 0 are incomparable to each other. The true weakest precondition is the disjunction of all
incomparable maximally weak preconditions.

Figure 2.5(b) shows an array merge function that is called to merge two arrays B and C
of sizes m1 and m2, respectively, into a third one A of size m3. The program is correct if no
invalid array accesses are made (stated as the assertions inside the loops) when it is run in an
environment where the input arrays are proper (m1,m2 ≥ 0). Our algorithm generates maximally
weak preconditions m3 ≥ m1 +m2 and m1 = 0 ∧m2 = 0—which are orthogonal to each other.

Notice that we have specified m1,m2 ≥ 0 as an assertion instead of an assumption. This
is required because otherwise the tool generates preconditions (e.g., m1 < 0) that, along with the
assumption, imply false at the beginning of the procedure. To circumvent these trivial cases we
need to ensure that all our required assumes appear in the generated precondition, which occurs
if they are asserted.

2.4.1 Locally pointwise-weakest strategy

For simplicity of presentation, we assume that each non-trivial maximal strongly connected
component in the control flow graph has exactly one cut-point—an assumption that can also be
ensured by simple transformations2. However, the results in this section can be extended to the
general setting without this assumption.

Towards a technique for maximally weak preconditions, we define two characterizations of
relations. First is a pointwise-weakest relation that connects a relation to relations “spatially”
adjacent to it in the control flow graph. The second is a locally pointwise-weakest relation that
connects a relation to relations “semantically” adjacent to it in the proof lattice. The notion of
nearby relations is in different realms for pointwise-weakest and for locally pointwise-weakest. For

2First, merge the targets of back-edges of each maximally strongly-connected component and introduce a special
control variable to direct the control flow appropriately. This ensures that it is appropriate to choose the target
of the new back-edge as the only cut-point for the entire SCC. Second, map the templates at the original choice
of cut-points in the original strongly connected component to one new template at the target of the new single
back-edge using backward symbolic execution.

27

Sn
...

Iπentry

I1

I2

In

I3

S1

S2
S3

Figure 2.6: Maximally weak preconditions as pointwise-weakest relations.

pointwise-weakest, the concept of a neighboring relation is a relation at a neighboring, specifically
successor, cut-point in the control flow graph. On the other hand, for locally pointwise-weakest,
it is the neighbors in a poset lattice ordered by the implication relation.

Definition 2.1 (Pointwise-weakest relations) A relation I at any cut-point is pointwise-weakest
if it is a weakest relation that is consistent with respect to the relations at its successor cut-points.

Pointwise-weakest relations ensure that when going from one cut-point to another the rela-
tions are as maximally weak as possible. Next, we define a notion of weakness with respect to the
proof lattice and which ensures that we always consider the weakest relation amongst relations in
the “proof neighborhood” of each other. Later, we define a suitable neighborhood N in the lattice
of linear relations.

Definition 2.2 (Locally pointwise-weakest relations) A relation I is a locally pointwise-weakest
with respect to a neighborhood N if it is a weakest relation among its neighbors that is consistent
with respect to the relations at its neighboring—successor—cut-points.

Our technique for maximally weak preconditions will consist of reducing the problem to
finding pointwise-weakest relations, which will in turn reduce to finding locally pointwise-weakest
relations. Pointwise weakest relations ensure that (spatial) neighbors are optimally assigned, while
locally pointwise-weakest relations ensure that the values at each cut-point are the (semantically)
weakest. First, the weakest precondition can be derived from pointwise-weakest relations at each
cut-point in reverse topological order of the control dependences between different cut-points.
Note that since we assume that each maximal SCC has at most one cut-point, there are no
cyclic control dependencies between different cut-points. Second, a pointwise-weakest relation can
be derived from locally pointwise-weakest relation and repeating the process to obtain a weaker
locally pointwise-weakest relation if one exists. Intuitively, this second iteration steps through local
minimas to reach the global minima.

Theorem 2.3 (Maximally weak preconditions) A precondition is maximally weak if it is a
pointwise-weakest relation at the program entry point, and every other relation in the program is
also pointwise-weakest.

Proof: Suppose otherwise that a precondition Iπentry
is not maximally weak while it is the

case that all relations, including the precondition, are pointwise-weakest. Since Iπentry
is not

maximally weak, we can construct another I ′ such that it is comparable and strictly weaker
than it, i.e., weaker(Iπentry

, I ′) holds. Consider the set of relation {Ii}i=1..n at the successor
cut-points to the precondition. Figure 2.6 shows the scenario. We know from Iπentry

being
pointwise-weakest that Iπentry

is the weakest fact that satisfies Iπentry
⇒ X for all X ∈ {Ii[Si]}.

Since I ′ is weaker that Iπentry
it implies that some X is weaker, and the corresponding Ii is weaker

(since Si remain identical). Since the original intermediate relations were pointwise-weakest,
now at least one of the successors of Ii will have to be correspondingly weaker. Transitively, at
least one relation will be required to be weaker, that is also a user provided assertion—which

28

cannot be weaker than specified, hence a contradiction.
�

We now define the proof neighborhood that Definition 2.2 uses.

Definition 2.3 (Neighborhood Structure Nc) We define a set of relations that are in the
neighborhood Nc of a conjunctive relation (in which, without loss of generality, all inequalities
are independent of each other), with c being the largest constant we allow, as follows:

Nc(
∧
i

ei ≥ 0) = {ej + 1
c ≥ 0 ∧

∧
i 6=j

ei ≥ 0 | j} ∪

{ej + 1
c e` ≥ 0 ∧

∧
i6=j

ei ≥ 0 | j 6= `} (2.4)

Neighborhood structure is computable Notice how a neighborhood structure helps template-based
invariant inference by ensuring that Nc is computable even for unknown (template) relations. The
unknown relations ej are of a template form cj,0 + cj,1x + cj,2y + cj,3z . . ≥ 0, where cj,i’s are
constant coefficients less than c, and x, y, z are program variables. Then each term in the set
comprehensions in Eq. (2.4) can be obtained as another linear relation, with appropriate unknown
linear coefficients obtained by collecting terms. For example, ej + 1

c el is another linear relation
with combinations of the coefficients of ej and el and expands to (cj,0 + 1

c cl,0) + (cj,1 + 1
c cl,1)x+

(cj,2 + 1
c cl,2)y + (cj,3 + 1

c cl,3)z . . ≥ 0.

Geometric Interpretation The neighborhood structure Nc has a nice geometric interpretation.
The neighbors of a convex region

∧
i

ei ≥ 0 are obtained by slightly moving any of the hyper-planes

ej ≥ 0 parallel to itself, or by slightly rotating any of the hyper-planes ej ≥ 0 along its intersection
with any other hyper-plane e` ≥ 0.

We extend the neighborhood structure to relations in DNF form (in which, without loss of
generality, all disjuncts are disjoint with each other) as:

Nc(
∨
i

Ii) = {I ′j ∨
∨
i6=j

Ii | I ′j ∈ Nc(Ij)}

Intuitively, Nc(I) defines the set of all immediate weaker neighbors of I in the poset of all linear
arithmetic formulas involving constants less than c and ordered by implication. This is formalized
by the the following lemma:

Lemma 2.2 (Nc = Immediately weaker neighbors) For all relations I ′ that are weaker than
I, there is some relation I ′′ ∈ Nc(I) such that I ⇒ I ′′ ⇒ I ′.

The proof of the this lemma is given in Appendix A, Section A.1, and is used to subsequently
prove the following theorem:

Theorem 2.4 Let π be a program point that does not lie inside any loop. Then, any locally
pointwise-weakest relation (with respect to the neighborhood structure Nc) at π is also a pointwise-
weakest relation at π.

Theorem 2.4 tells us that pointwise-weakest relations may be directly obtained from locally
pointwise-weakest relations for the case of program points outside of loops. However, for a program
point π inside a loop, a locally pointwise-weakest relation may not be a pointwise-weakest relation,
as we illustrate by the following example.

Example 2.2 Let c be the maximum constant allowed in the system. Then in Figure 2.8(a) the
locally pointwise-weakest relation x ≤ 1− 1

c is not pointwise-weakest. Of the relations expressible in
the system, the closest weaker relation (x ≤ 1) is not consistent, and therefore x ≤ 1− 1

c is locally
pointwise-weakest but not pointwise-weakest, as indicated by the the presence of x ≤ 8. Notice that
other relations, e.g., x ≤ 3, are not locally pointwise-weakest, since their neighborhood contains a
consistent relation x ≤ 3 + 1

c .

29

Swap(int x) {
while (∗)

if (x = 1)
x := 2;

else if (x = 2)
x := 1;

assert(x ≤ 8);
}

Figure 2.7: Illustrating the need for iteration in maximally weak precondition inference. Example
that has two local minima x < 1 and x ≤ 8 of which only the latter is the maximally weak
precondition.

Computing maximally weak preconditions in practice In practice, we need to compute maximally
weak preconditions for programs that have loops in addition to straight-line fragments. So while
Theorem 2.4 allows precise derivation of maximally weak relations for loop free fragments, we may
need to iterate over the locally pointwise-weakest relations inside loops. Notice that by ensuring
we stick to locally pointwise-weakest relation, in each iteration we will make the largest step to
the next point of discontinuity. For instance, for Example 2.2, we will take at most two steps in
the iterations, in stepping from x < 1 to the final solutions x ≤ 8. Since the solver’s decision is
not directed by approximate refinement, it may be the case that it outputs the pointwise-weakest
relation in the first iteration, terminating in fewer steps.

Notice that even for cases where the pointwise-weakest relations are discovered without
iteration, it is instructive to ask the solve for additional (orthogonal) solutions to ensure that the
resulting precondition is as close to the weakest precondition as possible. For instance, suppose
the weakest precondition is Ī ∨ I1 ∨ I2, and suppose Ī is not expressible in the template while I1
and I2 are. Also, let I1 and I2 be orthogonal to each other. In this case, we may get I1 directly,
or through iterations over locally pointwise-weakest to eventually get the pointwise-weakest, if a
loop is involved. We would still prefer to iterate to get other orthogonal solutions. The solve will
be able to generate I2 and subsequently claim that no other solutions are in the template. At that
point we will output I1 ∨ I2 as the approximation to the weakest precondition.

2.5 Maximally strong Postcondition

Given a program with a precondition, typically true, the problem of strongest postcondition
inference is to generate the most precise invariants at all, or a given set of, cut-points. Typically,
we are interested in the strongest postcondition Iπexit

at the program exit. Just as in the weakest
precondition case, we work with a relaxed notion of strongest postcondition, namely maximally
strong postconditions. For a given template structure T (as described in Section 2.2.3 for invariants)
we say that A is a maximally strong postcondition if A is an instantiation of T , and there is no
postcondition comparable to, and stronger than, A within template T .

We can encode that Iπexit
is a maximally strong postcondition as follows. The verification

condition in Eq. 2.1 can be regarded as function of two arguments Iπexit
and Ir, where Ir denote

the relations at all cut-points except at the program exit location, and can thus be written as
∀X.φ(Iπexit

, Ir). Now, for any other relation I ′ that is strictly stronger than Iπexit
, it should not be

the case that I ′ is a valid postcondition. This can be stated as the following constraint.

∀X.φ(Iπexit
, Ir) ∧

∀I ′, I ′r (stronger(Iπexit
, I ′)⇒ ¬∀X.φ(I ′, I ′r))

where stronger(Iπexit
, I ′)

def
= (∀X.(I ′ ⇒ Iπexit

) ∧ ∃X.(¬I ′ ∧ Iπexit
)).

Our technique for generating maximally strong postcondition is very similar to the maxi-
mally weak precondition technique described in Section 2.4. The key idea is to replace occurrences
of constant c in the locally pointwise-weakest strategy (Eq. 2.4) for maximally weak precondition

30

SP2() {
d := t := s := 0;
while(1)

if (*)

t++; s := 0;
else if (*)

if (s < 5)
d++; s++;

}

Figure 2.8: Maximally strong postcondition examples taken from sophisticated widening ap-
proaches [126, 127].

by −c to obtain corresponding strategies for generating maximally strong postconditions. The
corresponding neighborhood structure is defined to be:

Nc(
∧
i

ei ≥ 0) = {ej − 1
c ≥ 0 ∧

∧
i 6=j

ei ≥ 0 | j} ∪

{ej − 1
c e` ≥ 0 ∧

∧
i6=j

ei ≥ 0 | j 6= `} (2.5)

Examples To infer the maximally strong postconditions for the example in Figure 2.2 we remove
the assertion on line 11 and for generality abstract away the constant (50) as m. Our algorithm
generates the postcondition x = 2m+ 2.

For the procedure in Figure 2.8, our algorithm generates two orthogonal solutions in two
iterations: s + d + t ≥ 0 and d ≤ s + 5t. Iteratively solving for additional solutions allows us to
generate such orthogonal solutions. In each subsequent iteration we augment the original formula
with a constraint that ensures the orthogonality of new solutions with respect to already generated
ones.

2.6 Specification Inference = Interprocedural + maximally
weak preconditions + maximally strong postconditions

With a maximally weak precondition and maximally strong postcondition inference tech-
nique at hand, we now revisit the interprocedural analysis from Section 2.3 to define specifi-
cation inference as augmented summary computation. Given a procedure P , a summary3 set
{(Ai, Bi)}1≤i≤q is called precise and concise as follows (formalization of the informal definition
proposed earlier [274]):

Definition 2.4 (Precise and concise summaries) S = {(Ai, Bi)}1≤i≤q, a summary set for P ,
is

• Precise if for any valid summary (A′, B′) for P there exists some (Ak, Bk) ∈ S such that
A′ ⇒ Ak and A′ ⇒ (Bk ⇒ B′)4. That is, for every valid summary there exists a summary
in S that is at least as good (weaker in the assumptions and stronger in the assurance).

• Concise if for any (A′, B′) that satisfies Ak ⇒ A′ ∧A′ 6⇒ Ak and Ak ⇒ (B′ ⇒ Bk) for some
(Ak, Bk) ∈ S, it is the case that (A′, B′) is not a valid summary for P . Similarly, if Ak ⇒ A′

and Ak ⇒ (B′ ⇒ Bk ∧Bk 6⇒ B′) for some (Ak, Bk) ∈ S, it is the case that (A′, B′) is not a
valid summary for P . That is, any summary that is strictly better (either strictly weaker in
the assumption or strictly stronger in the assurance) than some summary in S is not a valid
summary.

3As noted before, it is entirely a matter of efficiency that we treat the summary as a pair. (A,B) may very well
be treated as a single formula—with a better summary being the one that is stronger.

31

Example 2.3 Consider the simple program P (x, y){r := 0; while(x > y){r := r + 1;x := x −
1}; return r; Then a concise and precise summary set is {(x ≥ y, ret = x− y), (x < y, ret = 0)}.

A summary set that is precise and concise is correspondingly relevant and efficient. It is
relevant because analyzing a call location ~v := P (~u) using a precise summary yields the same
outcome as with any other valid summary. It is efficient because a concise summary does not
contain any redundant facts. For example, for the case of conjunctive pre- and postconditions in
summary (A,B), removing any (independent) conjunct from A, and correspondingly adding any
(non-implied) conjunct to B, invalidates the summary. If we can generate concise summaries then
they can be extended by iteratively enumerating them to get a precise summary set. The notion
of a concise summary is essentially a combination of maximally weak preconditions and maximally
strong postconditions.

We can encode that (Iπentry
, Iπexit

) is a concise summary as follows. The verification condition
in Eq. 2.1 can now be regarded as function of three arguments Iπentry

, Iπexit
and Ir, where Ir denote

the relations at all cut-points except at the program entry and exit locations, and can thus be
written as ∀X.φ(Iπentry

, Iπexit
, Ir). Now, for any other relation I ′πentry

that is strictly weaker than

Iπentry
, it should not be the case that I ′πentry

is a valid precondition, for a fixed Iπexit
. Similarly, for

any other relation I ′πexit
that is strictly stronger than Iπexit

, it should not be the case that I ′πexit
is

a valid postcondition, for any fixed Iπentry
. This can be stated as the following constraint.

∀X.φ(Iπentry
, Iπexit

, Ir)

∧ ∀I ′πentry
, I ′r

(
weaker(Iπentry

, I ′πentry
)⇒ ¬∀X.φ(I ′πentry

, Iπexit
, I ′r)

)
∧ ∀I ′πexit

, I ′r
(
stronger(Iπexit

, I ′πexit
)⇒ ¬∀X.φ(Iπentry

, I ′πexit
, I ′r)

)
where as before,

weaker(Iπentry
, I ′πentry

)
def
= (∀X.(Iπentry

⇒ I ′πentry
) ∧ ∃X.(I ′πentry

∧ ¬Iπentry
))

stronger(Iπexit
, I ′πexit

)
def
= (∀X.(I ′πexit

⇒ Iπexit
) ∧ ∃X.(¬I ′πexit

∧ Iπexit
))

As before, for maximally weak/strong relations, we cannot directly encode this formula as
a SAT instance because of the nested quantification. The situation is additionally complicated
because we do not have any assertions (for which we computed the maximally weak preconditions)
or any preconditions (for which we computed the maximally strong postconditions) to propagate.
In fact, there will be potentially infinite families of summaries that are individually concise, yet
incomparable: Intuitively, given a concise summary (A,B), if we use a weaker precondition A′

instead of A, then it may be possible to derive another B′ that is weaker than B such that (A′, B′)
is a valid concise summary. Note that (A,B) and (A′, B′) are incomparable.

Example 2.4 Consider the simple program:

P (x, y){if(x ≤ y) then fail; else return x− y; }

Suppose the template only permits a single linear inequality. Then one concise summary is (x >
y, ret > x−y), but so is (x > y+10, ret > x−y+10). Notice that the summaries are incomparable.

Parameterized summaries To express a family of summaries, we discuss the notion of a parametrized
summary. Notice that the free variables in a standard summary (A,B) are the formal parameters
of the function for A and additionally the return variables for B. In a parametrized summary we
also allow a set of free variables that take integral values. Therefore for a function with input
x and return value ret, instead of a summary (x > 2, ret > 3) we may have a parametrized
summary (x > c, ret > c + 1), where c is the additional free variable representing an arbitrary
constant. Notice that this allows us to specify an infinite family of summaries, since the new vari-
ables are implicitly universally quantified over the domain of integers. Such symbolic summaries
have appeared in previous proposals [135, 274] for interprocedural analysis as well.

4Notice that the check on the assurance, i.e., B1 ⇒ B2, is made under the current context, i.e., A, and hence
the extra assumption, i.e., A⇒ (B1 ⇒ B2).

32

Parameterized summaries for loop-free programs Parameterized summaries may be trivially ob-
tained for loop-free programs by symbolically executing [166, 121] all paths through a loop free
program. Symbolic execution consists of treating the input parameters as symbolic unknowns and
then running an interpreter over the program. The interpreter makes calls to a theorem prover
when it needs to decide which branch of a conditional to take, and if both branches are feasible
given the symbolic constraints then it branches to explore both paths. Summaries generated using
symbolic execution may be aggregated by combining pre- and postconditions, if possible. Two
summaries can be combined without loss of information, if a new summary can be found that is
weaker (respectively, stronger) than both the original summaries in the precondition (respectively,
postcondition). In fact, this process can also approximate summary computation for certain well-
behaved loops, as has been proposed in the past [12]. Notice that this process will not yield concise
summaries by itself, as the input preconditions are constrained to be of the form ~x = ~α, i.e., a vec-
tor of equalities, where ~α are the initial symbolic values for the formals ~x. Thus, the summaries will
not be concise unless a complicated semantic merging step is used for postprocessing. For example,
for a program P (x, y){if(x > y) then return 2 ∗x− y; else {if(x = y) return y; else fail; }}
symbolic execution will generate two summaries (x > y, ret = 2x− y) and (x = y, ret = y), both
of which are not concise as their exists a single concise summary (x ≥ y, 2x−y) that is better than
them.

Concise parameterized summaries for programs with loops For programs with loops that cannot
be approximated using symbolic execution, it may be possible to use an encoding similar to our
maximally weak and maximally strong local encodings to generate conciseness constraints.

The key to generating parametrized summaries is to treat the input precondition Iπentry
and

output postcondition Iπexit
as unknowns (as before), but to write the output relation’s coefficient

as a function of the input coefficients. For instance, if Iπentry
is of the form C0 + C1x+ C2y . . ≥ 0

then the output relation has the form D0 +D1x+D2y . . ≥ 0, but where each Di is a function of the
Ci’s, i.e., each Di is ci0 + ci1C1 + ci2C2 + . . ≥ 0, where cij are the coefficients that the system infers
values for. Essentially we are treating the input coefficients Ci’s as variables in their own right
(thus implicitly universally quantifying them), and the output coefficient Di’s as being a function
of the input coefficients.

We then assert that Iπentry
is locally pointwise-weakest and Iπexit

is locally pointwise-strongest.
This ensures the (local) conciseness of the summary at the endpoints. Additionally, we need to
ensure that the endpoints are consistently connected to each other through intermediate relations
for which we assert locally pointwise-weakest/strongest constraints on the intermediate relations.
(We conjecture, but have not proven that because of symmetry in this case, that asserting locally
pointwise-weakest has the same effect as asserting locally pointwise-strongest. Therefore we can
assert either.) Locally pointwise-weakest/strongest constraints ensure that intermediate facts are
extremal. Lastly, we iterate to ensure that each summary computed is concise, and additionally
once a concise summary is obtained we assert its negation and iterate to compute a summary set
that is also precise.

Notice that this encoding will result in quadratic terms, i.e., quadratic in the variables that
are universally quantified, which now includes the Ci’s, in the resulting formula. We employ a
trick of renaming each quadratic term a ∗ b to a new variable a b to get a constraint system that is
linear. This translation is sound but incomplete as it ignores correlations between variables that
represent quadratic terms. For example, it may find a constraint system unsatisfiable that relies
on implications such as a = b ⇒ a ∗ a = b ∗ b. While it is incomplete we have found that most
programs require little quadratic reasoning, and missing facts can be manually assumed if required,
e.g., for the previous example, adding assume(a = b ⇒ a a = b b) at appropriate locations would
suffice. We discuss this translation more in Chapter 6.2.2.2.

33

Loop(int n, m) {
x := x0; y := y0;

while (x < y)
x := x+ n;
y := y +m;

}

Loop(int n, m) {
x := x0; y := y0; i := 0;
while (x < y)

i++;
x := x+ n;
y := y +m;

}
Original Program Instrumented Program

Figure 2.9: Discovering maximally weak preconditions for termination.

2.7 Applications

In earlier sections, we have described satisfiability-based techniques for verification of safety
properties. In this section, we show how to apply those techniques for finding counterexamples
to safety properties, verification of termination (an instance of a liveness property), and finding
counterexamples to termination.

2.7.1 Termination and Bounds Analysis

The termination problem involves checking whether the given procedure terminates under
all inputs. In this section, we show how to use the satisfiability-based approach to solve a harder
problem, namely bounds analysis. The problem of bounds analysis is to find a worst-case bound
on the running time of a procedure, say in terms of the number of instructions executed, as a
function its inputs.

We build on earlier techniques that reduce the bounds analysis problem to discovering
invariants of a specific kind [136, 139]. We compute bounds on loop iterations and the number of
recursive procedure call invocations. Each of these can be bounded by appropriately instrumenting
counter variables and estimating bounds on counter variables. We instrument loops “while c do
S” by adding a counter i to get “i := 0; while c do { i++; S; }”. The number of loop iterations are
then bounded by computing an upper bound on the value of i. We instrument recursive procedures
“P (x) { S }” by adding a counter i to get “P (x) { i := 0;P ′(x); }; P ′(x′) { i++; S[x′/x]; }”. the
number of invocations of the procedure are then bounded by computing an upper bound of the
value of the global variable i.

Claim 2.1 Let P be a given program. Let P ′ be the transformed program obtained after instru-
menting counters that keep track of loop iterations and recursive call invocations and introducing
partial assertions that the counters are bounded above by some function of the inputs. The program
P terminates iff the assert statements in P ′ are satisfied.

Invariant generation tools based on abstract interpretation have been proposed for com-
puting bounds on the counter variables [139, 136]. We show instead that a satisfiability-based
approach is particularly suited for discovering these invariants since they have a specified form
and involve linear arithmetic. We introduce assert statements with templates i <

∑
k akxk (at

the instrumented site i++ for loops and at the end of the procedure for recursive procedures) for
bounding the counter value. Observe that the bounds templates that we have introduced are lin-
ear. Instrumentation can be used to compute non-linear bounds as a composition of linear bounds
on multiple counters [139, 136].

Additionally, the satisfiability-based approach solves an even harder problem, namely in-
ferring preconditions under which the procedure terminates and inferring a bound under that
precondition. For this, we introduce the bound templates on instrumented counter variables as
described above and infer maximally weak preconditions. This is significant for procedures that
only terminate under certain preconditions and not for all inputs. We are not aware of any other
technique that can compute such conditional bounds.

34

Fib(int n) {
if(n = 0)
return 1;

else

return Fib(n− 1);
}

Fib(int n) {
i := 0
return Fib′(n)

}
Fib′(int n′) {
i++;
if(n′ = 0)

return 1;

else

return Fib′(n′ − 1);
}

Original Program Instrumented Program

Figure 2.10: Termination in the presence of recursion

Example In Figure 2.9 we compute three relations: the maximally weak precondition at the
beginning of the procedure, the bound on the instrumentation counter at the counter increment
site, and the loop invariant at the header. Our tool computes the precondition n ≥ m+ 1 and the
bound y0−x0. The latter requires discovering the inductive loop invariant i < (x−x0)− (y− y0).

Example Consider the recursive procedure shown in Figure 2.10. The instrumentation introduces
an auxiliary function Fib′, and we compute three relations: the maximally weak precondition at
the beginning of Fib, the procedure summary for Fib′, and the invariant i < a0+a1n at the counter
instrumentation point. Our tool computes the precondition n ≥ 0 at the entry to Fib(n), and the
bound i ≤ n inside Fib. The latter requires discovering the summary pair (n′ > 0, iout− iin ≤ n′).
This example illustrates interprocedural maximally weak precondition inference.

2.7.2 Counterexamples for Safety Properties

Since program analysis is an undecidable problem, tools cannot prove the correctness of
arbitrary correct programs or find bugs in arbitrary incorrect programs. Hence, to maximize the
practical success rate of verification tools, it is desirable to search in parallel for both proofs of cor-
rectness as well as counterexamples. Earlier, we showed how to find proofs of correctness of safety
and termination properties. In this section, we show how to find most-general counterexamples to
safety properties. A safety property is stated as set of safety assertions. A violation of the safety
property occurs if the negation of a safety assertion holds and is reachable.

The problem of most general counterexample for safety involves finding the most general
characterization of inputs that leads to the violation of some reachable safety assertion. We show
how to find such a characterization using the techniques discussed in Section 2.4 and Section 2.7.1.

The basic idea is to reduce the problem to that of finding the maximally weak precondition
for some safety property. This reduction involves constructing another program from the given
program P using the following transformations:

B1 Instrumentation of program with an error variable We introduce a new error variable that is
set to 0 at the beginning of the program. Whenever violation of the given safety property
occurs (the negation of the safety assertions holds), we set the error variable to 1 and jump
to the end of the program, where we assert that the error variable is equal to 1. We remove
the original safety assertion.

B2 Instrumentation to ensure termination of all loops For this we use the strategy described in
Section 2.7.1, wherein we instrument the program with counter variables and assert that the
counter variable is upper bounded by some function of loop inputs or procedure inputs. The
function is modeled using a linear arithmetic template for which we infer the coefficients.

35

Bug1(int y, n) {
1 x := 0;
2 if(y < 9)
3 while (x < n)
4 assert(x < 200);
5 x := x+ y;
6 else

7 while (x ≥ 0)
8 x++;
}

Bug1(int y, n) {
1 x := err := i1 := i2 := 0;
2 if(y < 9)
3 while (x < n)
4 i1++;
5 assert(i1 < f1(n, y));
6 if(x ≥ 200)
7 err := 1; goto L;
8 x := x+ y;
9 else

10 while (x ≥ 0)
11 i2++;
12 assert(i2 < f2(n, y));
13 x++;
14 L: assert(err = 1);
}

Original Program Instrumented Program

Figure 2.11: The most general counterexample that leads to violation of the safety assertion in the
original program is (n > 200)∧ (0 < y < 9). Our tool discovers this by instrumenting the program
appropriately and then running our maximally weak precondition algorithm.

Claim 2.2 Let P be a program with some safety assertions. Let P ′ be the program obtained from
program P by using the transformation B1 and B2 above. Then, P has an assertion violation iff
the assertions in program P ′ hold.

Claim 2.2 is significant as we can now use maximally weak precondition inference (Sec-
tion 2.4) on the transformed program to discover most-general characterization of inputs under
which there is a safety violation in the original program.

Example The program shown in Figure 2.11(a) is instrumented using transforms B1 and B2,
and the resulting program is shown in Figure 2.11(b). Our tool discovers the precondition (n >
200) ∧ (9 > y > 0). The loop invariant that asserts termination of the relevant loop on line 3 is
(n > 200) ∧ (i ≤ x) ∧ (9 > y > 0) ∧ (x ≤ 200). A loop bound using the function i < n+ 1 proves
that the loop terminates. On the other hand, since the loop on line 10 is unreachable under the
discovered preconditions an arbitrary f2 suffices.

Observe the importance of transformation B1. An alternative to transformation B1 that
one might consider is to simply negate the original safety assertion instead of introducing an error
variable. This is incorrect for two reasons: (a) It is too stringent a criterion because it insists
that in each iteration of the loop the original assertion does not hold, and (b) It does not ensure
reachability and allows for those preconditions under which the assert statement is never executed
at all. In fact, when we run our tool with such a naive transformation that simply negates the
safety assertion, we obtain n ≤ 0 as the maximally weak precondition.

Also, observe the importance of transformation B2. If we do not perform transformation
B2, then the tool discovers y ≤ 0 as the maximally weak precondition. Note that under this pre-
condition, the assertion at the end of the program always holds since that location is unreachable.
Observe that the transformation B2 does not require termination of every loop in the original
program. In fact, violation of safety properties can also occur in non-terminating programs. The
transformation B2 ensures termination of all loops that are reachable under the precondition that
the tool discovers and in the program obtained after transformation B1, which introduces extra
control-flow that breaks loops on any violation of a safety property. This is the case for the loop
on line 10, which is unreachable under the discovered preconditions and therefore any arbitrary
function f2 suffices.

36

NT1(int x, y) {
while (x ≥ 0)

x := x+ y;
y++;

}

NT2(int i) {
even := 0;
while (i ≥ 0)

if (even = 0)
i--;

else

i++;
even := 1− even;

}
(a) (b)

Figure 2.12: Non-termination examples from an alternative approach [143].

2.7.3 Counterexamples for Termination Properties

The problem of inferring most-general counterexamples for termination properties involves
finding the most-general characterization of inputs that leads to non-termination of the program.
Without loss of generality we assume that the program has at most one exit point.

Claim 2.3 Let P be a given program with a single exit point. Let P ′ be the program obtained
from P by adding the assert statement “assert(false)” at the end of the program. Then, P is
non-terminating iff the assert statement in P ′ is satisfied.

By Claim 2.3, we can use maximally weak precondition inference (Section 2.4) on the trans-
formed program to discover preconditions for non-termination.

Examples Consider the example shown in Figure 2.12(a). If we instrument the program to add
a assert(false) at the end, then our maximally weak precondition algorithm generates the con-
straint x ≥ 0 ∧ y ≥ 0, which is the maximally weak condition under which the program is non-
terminating.

Consider program shown in Figure 2.12(b). If we instrument assert(false) at the end of this
program, then our maximally weak precondition inference generates the condition i ≥ 1. Notice
that the loop guard i ≥ 0 is not sufficient to guarantee non-termination. A recent proposal [143]
for proving non-termination searches for recurrent sets of states and will have to unroll the loop
to reason about the value of even. We never unroll loops and additionally discover the maximally
weak preconditions that ensure non-termination.

2.8 Experiments

In previous sections, we have shown how to model various program analysis problems as the
problem of solving SAT constraints. We now present encouraging experimental results illustrating
that SAT solvers can in fact efficiently solve the SAT instances generated using our technique.
Our examples come directly from benchmarks used in state-of-the-art alternative techniques. We
employ an incremental strategy for choosing the template. We progressively increased the number
of bits in the bit-vector modeling and the number conjuncts and disjuncts if the SAT solver proves
the initial instances UNSAT, until the solver found a SAT solution, and thus inferred the invariants.
In practice, we never had to go beyond two iterations. In Tables 2.1, 2.2, 2.3, and 2.4 we present
the programs, the time taken in seconds for constraint generation and constraint solving, and the
number of clauses in the CNF formula. We provide sources and/or figure references from previous
sections for most examples and explain the remainder.

We ran the experiments on a two processor machine running Windows VistaTM and used
Z3 [87] as our SAT/SMT solver. We experimented with various other solvers (ZChaff [204] and its
variants, Minisat [100] etc.) but found Z3 to be the most efficient at solving the constraints gen-
erated for the benchmark programs. We have noticed that symmetry in the satisfiability problem,

37

Name Constraint Solving Number
Gen. Time (s) Time (s) Clauses

cegar1 [134] 0.09 0.08 5 K
cegar2 [134] 0.10 0.80 50 K
barbr [133] 0.15 0.41 76 K
berkeley [133] 0.13 3.00 441 K
bk-nat [133] 0.15 5.30 174 K
ex1 [133] 0.10 0.10 10 K
ex2 [133] 0.10 0.75 92 K
fig1a [133] 0.10 0.14 20 K
fig2 [133] 0.10 0.56 239 K
fig3 [133] 0.14 16.60 547 K
w1 [34], pg12 0.10 0.14 25 K
w2 [34], pg12 0.10 1.80 165 K

Table 2.1: Program verification over linear arithmetic.

Name Constraint Solving Number
Gen. Time (s) Time (s) Clauses

Fig 2.3(a), [239] 0.09 0.57 63 K
a1 [207], pg9 0.11 9.90 174 K
a2 [205], pg2 0.15 0.50 75 K
mergesort 0.09 0.19 43 K
quicksort 0.09 0.45 133 K
fibonacci 0.10 11.00 90 K
Fig 2.3(b) 0.20 72.00 558 K

Table 2.2: Interprocedural analysis over linear arithmetic.

seen for instance in the case of discovering disjunctive invariants, causes significant degradation
of performance. The solver could potentially use the symmetry information to prune its search
space. In future work, we expect to modify the solver to use this higher level domain informa-
tion. More details about engineering a satisfiability-based invariant generation tool are presented
in Chapter 6.

Even with our unoptimized prototype implementation the constraint generation phase takes
from between 0.09 − 0.30 seconds across all benchmarks. This includes the overhead of reading
and parsing the program from disk and CFG generation and the time to write the constraints to
disk. Many of these phases can be optimized—e.g., by eliminating writing intermediate phases
to disk—but we leave that to future work. This illustrates the scalability of our reductions. The
constraint solving phase is listed separately because it depends on the particular solver being used
and its current version, Z3 v1.0 for our case. The total time for constraint solving varies from 0.08
to 72.00 seconds. Improvements in solver technology will directly translate to decrease in these
numbers.

Table 2.1 presents program verification analysis on examples taken from abstraction refinement-
based techniques [134, 133] and programs for which standard widening/narrowing fails [34]. We ran
our tool on benchmarks considered in state-of-the-art alternative verification techniques [134, 133]
because they provide exhaustive comparison against techniques similar to theirs. w1 is a simple
loop iteration but with x ≤ n replaced with x 6= n while w2 is a loop with the guard moved inside
a non-deterministic conditional. Standard narrowing is unable to capture the precision lost due to
widening in these instances. Our solution times compare favorably against previous techniques.

Table 2.2 presents interprocedural analysis results on benchmarks from alternate propos-
als [205, 207, 239]. The first benchmark is the recursive add from Figure 2.3(a). The second a1

and third a2 programs rely on discover linear equality relations for recursive procedures. The

38

Name Constraint Solving Number
Gen. Time (s) Time(s) Clauses

Fig 2.2 [126, 127] 0.20 0.70× 2 107 K
Fig 2.8 0.20 5.70× 3 273 K
w1 [34], pg 12 0.10 0.30× 2 60 K
burner [125], pg 14 0.20 1.50× 1 100 K
speed [127], pg 10 0.20 9.10× 2 41 K
merge [126], pg 11 0.20 1.30× 3 128 K

Table 2.3: Maximally strong postcondition inference over linear arithmetic.

Name Constraint Solving Number
Gen. Time (s) Time (s) Clauses

[143], pg3 0.15 0.80× 1 42 K
Fig 2.12(b) [143], pg5 0.19 0.40× 1 57 K
Fig 2.12(a) [143], pg5 0.16 0.60× 1 43 K
loop 0.14 0.12× 1 15 K
Fig 2.5(a) 0.18 3.80× 4 119 K
Fig 2.5(b) 0.27 40.00× 2 221 K
Fig 2.7 0.23 0.50× 1 50 K
Fig 2.9 0.15 11.60× 1 118 K
Fig 2.11 0.30 34.00× 2 135 K

Table 2.4: Weakest precondition inference over linear arithmetic (including non-termination and
bug-finding examples).

fourth and fifth are recursive sorting programs and the sixth is the Fibonacci program. The last
benchmark in the set is the McCarthy91 function from Figure 2.3(b), for which we compute two
summaries.

Table 2.3 presents maximally strong postconditions generation results on benchmarks from
papers on sophisticated widening techniques [34, 125, 126, 127]. For our iterative algorithm we
present the times taken for each iteration and the number of iterations in the timings column. This
provides finer insight into the time taken for generating each maximally strong postcondition, as
opposed to just the total. w1, burner, speed and merge model hybrid automaton for real systems
and even our prototype timings are encouraging, so we are confident that our technique will be
practical.

For maximally weak precondition generation (as in maximally strong postcondition) we
present, as before, the time for each iteration times the number of iterations. The first set in
Table 2.4 presents results on analysis of non-termination programs nt1/nt2/nt3 [143] and shown in
Figures 2.12(a) and 2.12(b). Our technique also facilitates maximally weak precondition generation
for examples such as array increment and array copy and swap (Figures 2.5(a), 2.5(b) and 2.8(a))
which our tool analyzes in reasonable time. We also find the maximally weak preconditions for
termination for Figure 2.9. Lastly, generating maximally weak precondition for our most intriguing
example (Figure 2.11) takes 68 seconds.

2.9 Summary

This chapter described how to model a wide spectrum of program analysis problems as
SAT instances that can be solved using off-the-shelf constraint (SAT) solvers. We showed how to
model the problem of discovering invariants, both conjunctive and disjunctive, that involve linear
inequalities. We applied it to intra- and interprocedural checking of safety properties and timing
analysis of programs. We also showed how to model the problem of discovering maximally weak

39

preconditions and maximally strong postconditions. We applied pre- and postcondition inference
towards generating most-general counterexamples for both safety and termination properties.

The constraints that we generate are boolean combinations of quadratic inequalities over
integer variables, which we reduce to SAT formulas using bit-vector modeling. We showed experi-
mentally that the SAT solver can efficiently solve such constraints generated from hard benchmarks.

2.10 Discussion

Contrast with tradition It is important to compare the benefits and limitations of a satisfiability-
based approach against traditional iterative fixed-point approximation techniques, such as data-
flow analyses, abstract interpretation and model checking.

The key difference between a satisfiability-based approach and traditional techniques is the
lack of iterative approximations. By encoding the problem as a solution to a SAT instance, we
are able to delegate fixed-point solving to the SAT solver, and verification is non-iterative. Only
when we deal with the more sophisticated problem of weakest precondition/strongest postcondi-
tion inference do we have to resort to iteration, and that too only when enumerating orthogonal
solutions, or when dealing with programs with local minimas.

Additionally, we note two advantages of a satisfiability-based approach. First, a satisfiability-
based approach is goal-directed and hence has the potential to be more efficient. The data-flow
analyses or abstract interpreters typically work either in a forward direction or in a backward
direction, and hence are not goal-directed. Some efforts to incorporate goal-directedness involve
repeatedly performing a forward (or backward) analysis over refined abstractions obtained using
counterexample guidance, or by repeatedly iterating between forward and backward analyses [78].
However, each forward or backward analysis attempts to compute the most precise information
over the underlying domain, disregarding what might really be needed. On the other hand, the
satisfiability-based approach is fully goal-directed; it abstracts away the control-flow of the program
and incorporates information from both the precondition as well as the postcondition in the con-
straints. Second, a satisfiability-based approach does not require widening heuristics, that can lead
to uncontrolled loss of precision, but are required for termination of iterative fixed-point techniques.
Abstract interpreters iteratively compute approximations to fixed-points and use domain-specific
extrapolation operators (widening) when operating over infinite height lattices (e.g., lattice of lin-
ear inequalities) to ensure termination. Use of widening leads to an uncontrolled loss of precision.
This has led to development of several widening heuristics that are tailored to specific classes
of programs [267, 133, 126, 127]. We show that the satisfiability-based approach can uniformly
discover invariants for all such programs.

We now note some disadvantages of a satisfiability-based approach. First, the execution
time of analyses in this framework is less deterministic as it is dependent on the efficiency of the
underlying SAT solver. In preliminary tests, we found competitive efficiency but only further
experiments will demonstrate the true limitations of this approach. Second, a domain-specific
technique, namely Farkas’ Lemma, enabled the reduction of program constraints to satisfiability
constraints. In the next chapter, we will see an algorithm for a predicate abstraction of programs
that reduces the problem to satisfiability constraints. Such domain specific reductions are nec-
essarily required for our approach and for earlier ones (e.g., join, widen, and transfer functions
in abstract interpretation). The key to successfully exploiting the power of a satisfiability-based
framework for program analysis will be the development of novel domain specific reductions.

Using satisfiability-based approaches Ideas similar to the ones presented here, have been explored
by others in developing efficient program analysis solutions. InvGen generates SAT instances that
are simpler to solve by augmenting the core constraints with constraints over a set of symbolic paths
(e.g., from tests) [144, 145]. Constraint-based solutions find applications in hardware synthesis [69].
For inferring dependent types, specifically, ML types refined by linear relations, liquid types [230,
162] generates and solves constraints over the refinements, and can benefit from a satisfiability-
based approach.

40

Chapter 3

Program Reasoning over Predicate
Abstraction

“Besides black art, there is only au-
tomation and mechanization.”

— Federico Garcia Lorca1

In this chapter, we augment the expressivity of the invariant generation approach of the pre-
vious chapter by inferring invariants over predicate abstraction. We describe how a satisfiability-
based approach over predicate abstraction can discover invariants with quantified and arbitrary
boolean structure. These then help us prove the validity of given assertions or generating pre-
conditions under which the assertions are valid. We present three novel algorithms, having dif-
ferent strengths, that combine template-and predicate abstraction-based formalisms to discover
sophisticated program invariants using SMT solvers.

Two of these algorithms use an iterative approach to compute least and greatest fixed-
points, while the third algorithm uses a non-iterative satisfiability-based approach that is similar
in spirit to the approach for linear arithmetic. The key idea for predicate abstraction in all these
algorithms is to reduce the problem of invariant discovery to that of finding optimal solutions, over
conjunctions of some predicates from a given set, for unknowns in a template formula.

We have implemented the algorithms presented in this chapter in a tool that we call VS3
PA.

Preliminary experiments using VS3
PA show encouraging results over a benchmark of small but com-

plicated programs. Our algorithms can verify program properties that, to our knowledge, have
not been automatically verified before. In particular, our algorithms can generate full correctness
proofs for sorting algorithms by inferring nested universally-existentially quantified invariants, and
can also generate preconditions required to establish worst-case upper bounds of sorting algorithms.
Furthermore, for properties that can be verified by previous approaches, our tool is more efficient.

3.1 Using SMT Solvers for Program Reasoning

In this chapter, we continue our discussion on template-based program analysis that shows
promise in discovering invariants that are beyond the reach of fully automated techniques. The
programmer provides hints in the form of a set of invariant templates with holes/unknowns that
are then automatically filled in by the analysis. However, in the previous chapter we discussed
quantifier-free numerical invariants, also considered in previous work [234, 235, 63, 161, 28, 138]). In
contrast, in this chapter we consider invariants with arbitrary but pre-specified logical structure—
involving disjunctions and universal and existential quantifiers—over a given set of predicates.
One of the key features of our template-based approach is that it uses the standard interface to an
SMT solver, allowing it to go beyond numerical properties and leverage ongoing advances in SMT
solving.

1Spanish poet, dramatist and theater director, 1898-1936.

41

Our templates consist of formulae with arbitrary logical structure (quantifiers, boolean
connectives) and unknowns that take values over some conjunction of a given set of predicates
(Section 3.3). Such a choice of templates puts our work in an unexplored space in the area of
predicate abstraction, which has been highly successful in expressing useful non-numerical and
disjunctive properties of programs. The area was pioneered by Graf and Seidl [129], who showed
how to compute quantifier-free invariants over a given set of predicates. Later, strategies were
proposed to discover universally quantified invariants [113, 177, 155] and disjunctions of univer-
sally quantified invariants in the context of shape analysis [221]. Our work extends the field by
discovering invariants that involve an arbitrary (but pre-specified quantified structure) over a given
set of predicates. Since the domain is finite, one can potentially search over all possible solutions,
but this naive approach would be too computationally expensive to be feasible.

We therefore present three novel algorithms for efficiently discovering inductive loop invari-
ants that prove the validity of assertions in a program, given a suitable set of invariant templates
and a set of predicates. Two of these algorithms use iterative techniques, unlike the SAT-based
approach presented in the previous chapter, for computing fixed-point as in data-flow analysis or
abstract interpretation. One of them performs a forward propagation of facts and computes a
least fixed-point, and then checks whether the facts discovered imply the assertion or not (Sec-
tion 3.5.1). The other algorithm performs a backward propagation of facts starting from the given
assertion and checks whether the precondition discovered is true or not (Section 3.5.2). The third
algorithm uses a satisfiability-based approach, akin to the approach in the previous chapter, to
encode the fixed-point as a SAT formula such that a satisfying assignment to the SAT formula
maps back to a proof of validity for the assertion (Section 3.6). The worst-case complexity of these
algorithms is exponential only in the maximum number of unknowns at two neighboring points
as opposed to being exponential in the total number of unknowns at all program points for the
naive approach. Additionally, in practice we have found them to be efficient and having different
strengths (Section 3.8).

The key operation in these algorithms is that of finding optimal solutions for unknowns in
a template formula such that the formula is valid (Section 3.4). The unknowns take values that
are conjunctions of some predicates from a given set of predicates, and can be classified as either
positive or negative depending on whether replacing them by a stronger or weaker set of predicates
makes the formula stronger or weaker respectively. We describe an efficient, systematic, search
process for finding optimal solutions to these unknowns. Our search process uses the observation
that a solution for a positive (or negative) unknown remains a solution upon addition (or deletion)
of more predicates.

One of the key aspects of our algorithms is that they can be easily extended to discover
maximally weak preconditions. This is unlike most invariant generation tools that cannot be
easily extended to generate pre-conditions, especially those that are maximally weak. Automatic
precondition generation not only reduces the annotation burden on the programmer in the usual
case, but can also help identify preconditions that are not otherwise intuitive.

3.2 Motivating Examples

Inferring invariants for checking assertions Consider the in-place InsertionSort routine in Fig-
ure 3.1 that sorts an array A of length n. The assertion at Line 9 asserts that no elements in
array A are lost, i.e., the array A at the end of the procedure contains all elements from array Ã,
where Ã refers to the state of array A at the beginning of the procedure. The assertion as well
as the loop invariants required to prove it are ∀∃ quantified, and we do not know of any other
automated tool that can automatically discover such invariants for array programs.

In this case, the user can easily guess that the loop invariants would require a ∀∃ structure
to prove the assertion on Line 9. Additionally, the user needs to guess that an inductive loop
invariant may require a ∀ fact (to capture properties of array elements) and a quantifier-free fact
relating non-array variables. The quantified facts contain an implication as in the final assertion.
The user also needs to provide the set of predicates. In this case, the set consisting of inequality

42

InsertionSort(Array A, int n)
1 i := 1;
2 while (i < n)
3 j := i− 1; val := A[i];
4 while (j ≥ 0 ∧A[j] > val)
5 A[j + 1] := A[j];
6 j := j − 1;
7 A[j + 1] := val;

8 i := i+ 1;

9 Assert(∀y∃x : (0 ≤ y < n)⇒ (Ã[y] = A[x] ∧ 0 ≤ x < n))

User Input:
Invariant Template: v1 ∧ (∀y : v2 ⇒ v3) ∧ (∀y∃x : v4 ⇒ v5)

Predicate Set:
AllPreds({x, y, i, j, n}, {0,±1}, {≤,≥, 6=}) ∪
AllPreds({val, A[t], Ã[t] | t ∈ {i, j, x, y, n}}, {0}, {=})

Tool Output:
(Proof of validity of assertion)

Outer Loop Invariant:

(
∀y : (i ≤ y < n)⇒ (Ã[y] = A[y]) ∧
∀y∃x : (0 ≤ y < i)⇒ (Ã[y] = A[x] ∧ 0 ≤ x < i)

)

Inner Loop Invariant:

val = Ã[i] ∧ −1 ≤ j < i ∧
∀y : (i < y < n)⇒ Ã[y] = A[y] ∧
∀y∃x : (0 ≤ y < i)

⇒ (Ã[y] = A[x] ∧ 0 ≤ x ≤ i ∧ x 6= j + 1)

Figure 3.1: Verifying that insertion sort preserves all its input elements AllPreds(Z,C,R) denotes
the set of predicates {z − z′ op c, z op c | z, z′ ∈ Z, c ∈ C, op ∈ R}.

and disequality comparisons between terms (variables and array elements that are indexed by
some variable) of appropriate types suffices. This choice of predicates has been used successfully
in previous work on predicate abstraction [15, 11, 176, 177]. Given these user inputs, our tool then
automatically discovers the non-trivial loop invariants mentioned in the figure.

As a second example, consider the program shown in Fig. 3.2, which checks whether all
elements of A are contained in B. The loop invariant required contains ∀∃ quantification, which
our tool can infer. We do not know of any other tool that can automatically discover such invariants.
Note how the conjuncts in the invariant template in this case follow the schematic of the given
assertion and therefore are ∀∃-quantified. We discovered the appropriate number of conjuncts by
iteratively guessing templates.

Our tool eases the task of validating the assertion by requiring the user to only provide a tem-
plate in which the logical structure has been made explicit, and provide some over-approximation
of the set of predicates. Guessing the template is a much easier task than providing the precise
loop invariants, primarily because these templates are usually uniform across the program and
depend on the kind of properties to be proved.

Precondition Generation Consider the in-place SelectionSort routine in Figure 3.3. This routine
sorts an array A of length n. Suppose we want to verify that the worst-case number of array swaps
is indeed n− 1. This problem can be reduced to the problem of validating the assertion at Line 7.
If the assertion holds then the swap on Line 8 is always executed, n−1 times [136]. However, this
assertion is not valid without an appropriate precondition, e.g., consider a fully sorted array for
which no swaps happen. We want to find a precondition that does not impose any constraints on
n while allowing the assertion to be valid. This would provide a proof that SelectionSort indeed

43

SetInclusion(Array A, int n, Array B, int m)
1 for (i = 0; i < n; i++)
2 exists := false;
3 for (j = 0; j < m; j++)
4 if (A[i] = B[j])
5 exists := true; break;

6 if (¬exists) return false;

7 Assert (∀y∃x : (0 ≤ y < n)
8 ⇒ (A[y] = B[x] ∧ 0 ≤ x < m))
9 return true;

User Input:
Invariant Template: v1 ∧ (∀y∃x : v2 ⇒ v3) ∧ (∀y∃x : v4 ⇒ v5)

Predicate Set:
AllPreds′({x, y, i, j,m}, {0}, {≤, <}) ∪
AllPreds′({exists}, {true, false}, {=}) ∪
AllPreds′({A[t], B[t] | t ∈ {x, y}}, {0}, {=})

Tool Output:
(Proof of validity of assertion)

Outer loop invariant: (∀y∃x : (0 ≤ y < i)⇒ (A[y] = B[x] ∧ 0 ≤ x < m))

Inner loop invariant:

j ≥ 0
∀y∃x : (0 ≤ y < i)⇒ (A[y] = B[x] ∧ 0 ≤ x < m)
∀y∃x : (y = i ∧ exists = true)

⇒ (A[y] = B[x] ∧ 0 ≤ x < m)

Figure 3.2: Verifying that a program that checks set inclusion is functionally correct. VS3 computes
the ∀∃ invariants required to prove the correctness. AllPreds′(Z,C,R) denotes the set of predicates
{z op z′ | z, z′ ∈ Z ∪ C, op ∈ R}.

44

admits a worst-case of n− 1 memory writes.
In this case, the user can easily guess that a quantified fact—∀k1, k2 that compares the

elements at locations k1 and k2—will capture the sortedness property that is required. However,
this alone does not yield the correct invariants. The user then iteratively guesses and adds templates
until a precondition is discovered. Two additional quantified facts and an unquantified fact suffice
in this case. While right now this process is manual, in the future it we can expect it can be
automated. The user also supplies a predicate set consisting of inequalities and disequalities
between terms of comparable types. The non-trivial output of our tool is shown in the figure.

Our tool automatically infers the maximally weak precondition that the input array should
be sorted from A[0] to A[n− 2], while the last entry A[n− 1] contains the smallest element. Other
sorting programs usually exhibit their worst-case behaviors when the array is reverse-sorted. For
selection sort, a reverse sorted array is not the worst case; it incurs only n

2 swaps. By automati-
cally generating this maximally weak precondition our tool provides significant insight about the
algorithm, reducing programmer burden.

As another example, consider the program shown in Fig. 3.4, which implements a binary
search for the element e in an array A. The functional specification of the program is given as
the assertion on Line 9, which states that if the procedure returns false, then A indeed does not
contain e. Our tool allows the user to specify assertions and assumptions with arbitrary logical
structure up to those expressible in the underlying SMT solver. Assumptions may be required to
model expressions not handled by the solver. For instance, since SMT solvers currently do not
handle division, the assignment on Line 3 is modeled as Assume(low ≤ mid ≤ high).

For this function, our tool automatically infers the maximally weak precondition for func-
tional correctness, shown in Fig. 3.4, which is that the input array is sorted. It also infers the loop
invariant, also shown in Fig. 3.4, encoding the semantics of binary search (that the array elements
between low and high are sorted and those outside do not equal e).

In the following sections, we develop the theory over predicate abstraction that helps us
build tools that can analyze and infer the expressive properties illustrated here.

3.3 Notation

We often use a set of predicates in place of a formula to mean the conjunction of the
predicates in the set. In our examples, we often use predicates that are inequalities between
a given set of variables or constants. We use the notation QV to denote the set of predicates
{v1 ≤ v2 | v1, v2 ∈ V }. We use the notation Qj,V to denote the set of predicates {j < v, j ≤ v, j >
v, j ≥ v | v ∈ V }. Also, we will use the notation {xi}i as an abbreviation to a set of indexed
variables {xi | xi ∈ X}, if the domain/universe X of the elements xi’s is explicit from their type.

3.3.1 Templates for Predicate Abstraction

A template τ is a formula over unknown variables vi that take values over (conjunctions
of predicates in) some subset of a given set of predicates. We consider the following language of
templates:

τ ::= v | ¬τ | τ1 ∨ τ2 | τ1 ∧ τ2 | ∃x : τ | ∀x : τ

We denote the set of unknown variables in a template τ by Unk(τ). We say that an unknown
v ∈ Unk(τ) in template τ is a positive (or negative) unknown if τ is monotonically stronger (or
weaker respectively) in v. More formally, let v be some unknown variable in Unk(τ). Let σv be
any substitution that maps all unknown variables v′ in Unk(τ) that are different from v to some
set of predicates. Let Q1, Q2 ⊆ Q(v). Then, v is a positive unknown if

∀σv, Q1, Q2 : (Q1 ⇒ Q2) ⇒ (τσv[v 7→ Q1]⇒ τσv[v 7→ Q2])

Similarly, v is a negative unknown if

∀σv, Q1, Q2 : (Q1 ⇒ Q2) ⇒ (τσv[v 7→ Q2]⇒ τσv[v 7→ Q1])

45

SelectionSort(int* A, int n)
1 i := 0;
2 while (i < n− 1)
3 min := i; j := i+ 1;
4 while (j < n)
5 if (A[j] < A[min]) min := j;
6 j := j + 1;
7 Assert(i 6= min);
8 if (i 6= min) swap A[i] and A[min];
9 i := i+ 1;

User Input:
Template: (v0 ∧ (∀k : v1 ⇒ v2) ∧ (∀k : v3 ⇒ v4) ∧ (∀k1, k2 : v5 ⇒ v6))

Predicate Set:

(
AllPreds({k, k1, k2, i, j, min, n}, {0, 1}, {≤,≥, >}) ∪
AllPreds({A[t] | t ∈ {k, k1, k2, i, j, min, n}}, {0, 1}, {≤,≥})

)

Tool Output:
(Assertion valid under following precondition)

Precondition Required:

(
∀k : (0 ≤ k < n− 1)⇒ A[n− 1] < A[k]
∀k1, k2 : (0 ≤ k1 < k2 < n− 1)⇒ A[k1] < A[k2]

)
Outer Loop Invariant:

(
∀k1, k2 : (i ≤ k1 < k2 < n− 1)⇒ A[k1] < A[k2]
∀k : i ≤ k < n− 1⇒ A[n− 1] < A[k]

)

Inner Loop Invariant:

∀k1, k2 : (i ≤ k1 < k2 < n− 1)⇒ A[k1] < A[k2]
∀k : (i ≤ k < n− 1)⇒ A[n− 1] < A[k]
∀k : (i ≤ k < j)⇒ A[min] ≤ A[k]
j > i ∧ i < n− 1

Figure 3.3: Generating the weakest precondition under which Selection Sort exhibits its worst-case
number of swaps.

46

BinarySearch(Array A, int e, int n)
1 low := 0;high := n− 1;
2 while (low ≤ high)
3 mid := d(low + high)/2e;
4 if (A[mid] < e)
5 low := mid+ 1;
6 else if (A[mid] > e)
7 high := mid− 1;
8 else return true;

9 Assert (∀j : (0 ≤ j < n)⇒ A[j] 6= e)
10 return false;

User Input:
Invariant Template: v1 ∧ (∀j : v2 ⇒ v3) ∧ (∀j : v4 ⇒ v5) ∧ (∀j : v6 ⇒ v7)

Predicate Set:
AllPreds′({j, n, low, high}, {0}, {≤, <}) ∪
AllPreds′({A[t] | t ∈ {j, j ± 1}} ∪ {e}, {0}, {≤, 6=})

Tool Output:
(Assertion valid under the following precondition)

Precondition: (∀j : (0 ≤ j < n)⇒ A[j] ≤ A[j + 1])

Loop Invariant:

0 ≤ low ∧ high < n
∀j : (low ≤ j ≤ high)⇒ A[j] ≤ A[j + 1]
∀j : (0 ≤ j < low)⇒ A[j] 6= e
∀j : (high < j < n)⇒ A[j] 6= e

Figure 3.4: Generating the weakest precondition for the functional correctness of binary search.

47

Unk+(v) = {v}
Unk+(¬τ) = Unk−(τ)

Unk+(τ1 ∧ τ2) = Unk+(τ1) ∪ Unk+(τ2)

Unk+(τ1 ∨ τ2) = Unk+(τ1) ∪ Unk+(τ2)

Unk+(∀X : τ) = Unk+(τ)

Unk+(∃X : τ) = Unk+(τ)

Unk−(v) = ∅
Unk−(¬τ) = Unk+(τ)

Unk−(τ1 ∧ τ2) = Unk−(τ1) ∪ Unk−(τ2)

Unk−(τ1 ∨ τ2) = Unk−(τ1) ∪ Unk−(τ2)

Unk−(∀X : τ) = Unk−(τ)

Unk−(∃X : τ) = Unk−(τ)

Figure 3.5: Structural decomposition of a formula τ to compute the set of positive (Unk+(τ)) and
negative (Unk−(τ)) unknowns.

Example 3.1 Consider the template τ
.
= v1 ⇒ v2. Let us see how v1 is a negative unknown while

v2 is a positive unknown in τ . Let σv be some arbitrary map, e.g., σv = {v1 7→ x > 0}. Then τσv
evaluates to x > 0⇒ v2. For v2 to be a positive variable in τ , then it must satisfy

∀Q1, Q2 : (Q1 ⇒ Q2) ⇒ ((x > 0⇒ v2)[v2 7→ Q1]⇒ (x > 0⇒ v2)[v2 7→ Q2])

or equivalently,

∀Q1, Q2 : (Q1 ⇒ Q2) ⇒ ((x > 0⇒ Q1)⇒ (x > 0⇒ Q2))

The consequent simplifies to (x > 0∧¬Q1)∨ (¬(x > 0)∨Q2). By distributing the disjunction over
the conjunction in the first term and simplifying, this reduces to ¬(x > 0)∨¬Q1 ∨Q2. This is the
same as x > 0⇒ (Q1 ⇒ Q2), which trivially holds under the antecedent Q1 ⇒ Q2. An analogous
argument shows that v1 is a negative unknown.

If each unknown variable in a template/formula occurs only once, then it is easy to see each
unknown is either positive or negative. We use the notation Unk+(τ) and Unk−(τ) to denote the set
of all positive unknowns and negative unknowns respectively in τ . The sets Unk+(τ) and Unk−(τ)
can be computed using structural decomposition of τ as shown in Figure 3.5.

Example 3.2 Consider the following template τ with unknown variables v1, . . , v5.

(v1 ∧ (∀j : v2 ⇒ sel(A, j) ≤ sel(B, j)) ∧
(∀j : v3 ⇒ sel(B, j) ≤ sel(C, j))) ⇒

(v4 ∧ (∀j : v5 ⇒ sel(A, j) ≤ sel(C, j)))

Then, Unk+(τ) = {v2, v3, v4} and Unk−(τ) = {v1, v5}. Note our modeling of arrays using select
(sel) predicates as described in the next section.

3.3.2 Program Model

We assume that a program Prog consists of the following kind of statements s (besides the
control-flow).

s ::= x := e | assert(φ) | assume(φ)

In the above, x denotes a variable and e denotes some expression. Memory reads and writes can
be modeled using memory variables, e.g., variables denoting arrays, and using McCarthy’s select
(sel) and update (upd) predicates [199]. Since we allow for assume statements, without loss of
generality we can treat all conditionals in the program as non-deterministic.

We now give a formalism in which different templates can be associated with different pro-
gram points, and different unknowns in templates can take values from different sets of predicates.
Recall from Chapter 2 that a cut-set C of a program Prog is a set of program points, called cut-
points, such that any cyclic path in Prog passes through some cut-point. Every cut-point in C

48

is labeled with an invariant template. For simplicity, we assume that C also consists of program
entry and exit locations, which are labeled with an invariant template that is simply true. Let
Paths(Prog) denote the set of all tuples (δ, τ1, τ2, σt), where δ is some straight-line path between
two cut-points from C that are labeled with invariant templates τ1 and τ2 respectively. Without
loss of any generality, we assume that each program path δ is in static single assignment (SSA)
form. The variables that are live at start of path δ are the original program variables, and the SSA
versions of the variables that are live at the end of δ are given by a map σt

.
= {vi 7→ v′i}i, while

σ−1
t

.
= {v′i 7→ vi}i denotes the reverse map, where vi and v′i are the corresponding variables live at

the beginning and end, respectively.
Notice that in the previous chapter we did not make this assumption about the program

being in SSA form. We will see later that SSA form allows us to treat predicates opaquely, as
is required here, while in the previous chapter we could inspect, and substitute into, the linear
relations.

We use the notation Unk(Prog) to denote the set of unknown variables in the invariant
templates at all cut-points of Prog.

Example 3.3 Consider as a running example the program ArrayInit below, which initializes all
array elements to 0. Consider for this program, a cut-set C that consists of only the program

ArrayInit(int* A, int n)
1 i := 0;
2 while (i < n)
3 A[i] := 0;
4 i := i+ 1;
5 Assert(∀j : 0 ≤ j < n⇒ sel(A, j) = 0);

location 2, besides the entry location and the exit location. Let the program location 2 be labeled
with the invariant template ∀j : v ⇒ sel(A, j) = 0, which has one negative unknown v. Then,
Paths(ArrayInit) consists of the following tuples.

Entry Case (i := 0, true, ∀j : v ⇒ sel(A, j) = 0, σt), where σt is the identity map.

Exit Case (assume(i ≥ n),∀j : v ⇒ sel(A, j) = 0,∀j : 0 ≤ j < n ⇒ sel(A, j) = 0, σt), where σt
is the identity map.

Inductive Case (assume(i < n);A′ := upd(A, i, 0); i′ := i + 1,∀j : v ⇒ sel(A, j) = 0,∀j : v ⇒
sel(A′, j) = 0, σt), where σt(i) = i′, σt(A) = A′.

3.3.3 Invariant Solution

In Section 2.2.1, we reviewed verification conditions. We will use the same framework in this
chapter, but it is important to revisit the definition as we will use a slightly different mechanism
for reasoning about assignments (as hinted earlier).

We will now define a verification condition as parameterized by the straight-line path δ (a
sequence of statements s) in SSA form between two program points and by the invariant templates
τ1 and τ2 at those points, as follows:

VC(〈τ1, δ, τ2〉) = τ1 ⇒ WP(δ, τ2)

The weakest liberal precondition WP(δ, φ) of formula φ with respect to path δ is almost as before,
restated in Table 3.1, except for the difference in the handling of assignment. An assignment is
now translated to an equality predicate. Observe that the correctness of the assignment rule in
Table 3.1 relies on the fact that the statements on path δ are in SSA form. This is important
since otherwise we will have to address the issue of substitution in templates, as the only choice

49

WP(skip, φ) = φ
WP(s1; s2, φ) = WP(s1, WP(s2, φ))

WP(assert(φ′), φ) = φ′ ∧ φ
WP(assume(φ′), φ) = φ′ ⇒ φ

WP(x := e, φ) = (x = e)⇒ φ

Table 3.1: Weakest precondition transformer.

for WP(x := e, φ) when the path δ is in non-SSA form would be φ[e/x]. In this chapter, our
algorithms treat predicates opaquely (as long as the SMT solver understands their interpretation),
and consequently substitution is not a viable option.

Definition 3.1 (Invariant Solution) Let Q be a predicate-map that maps each unknown v in
any template invariant in program Prog to some set of predicates Q(v). Let σ map each unknown
v in any template invariant in program Prog to some subset of Q(v). We say that σ is an invari-
ant solution for Prog over Q if the following formula VC(Prog, σ), which denotes the verification
condition of the program Prog w.r.t. σ, is valid.

VC(Prog, σ)
def
=

∧
(δ,τ1,τ2,σt)∈Paths(Prog)

VC(〈τ1σ, δ, τ2σσt〉)

Example 3.4 Consider the program ArrayInit described in Example 3.3. Let Q map unknown
v in the invariant template at cut-point location 2 to Qj,{0,i,j}. Let σ map v to Q0 = {0 ≤
j, j < i}. Then, σ is an invariant solution for ArrayInit over Q since the verification condition
VC(ArrayInit, σ) of the program ArrayInit, which is given by the conjunction of the following
formulas, is valid.

• i = 0 ⇒ (∀j : Q0 ⇒ sel(A, j) = 0)
• (i ≥ n ∧ (∀j : Q0 ⇒ sel(A, j) = 0)) ⇒ (∀j : 0 ≤ j ≤ n⇒ sel(A, j) = 0)
• (i < n ∧ A′ = upd(A, i, 0) ∧ i′ = i+ 1 ∧

(∀j : Q0 ⇒ sel(A, j) = 0)) ⇒(∀j : Q0σt ⇒ sel(A′, j) = 0)
where σt(i) = i′ and σt(A) = A′.

Sections 3.5 and 3.6 describe algorithms for generating an invariant solution given program
Prog and an appropriate predicate-map Q.

3.4 Optimal Solutions

In this section, we present the core operation of generating an optimal solution that is used
by our algorithm to perform local reasoning about program paths, which are encoded as formulae.
Separating local reasoning from fixed-point computation is essential because the semantics of a
program with loops cannot be exactly encoded as an SMT constraint.

Semantics of loopy programs as opposed to SMT
Encoding the semantics of programs with loops would mean being able to solve for the invariant
solution from Definition 3.1; which is the implicitly quantified formula ∃σ∀X : VC(Prog, σ),
where X is the set of program variables that appear in the verification condition. On the other
hand an SMT formula φ that we have solvers for are implicitly quantified as ∃X ′ : φ, where X ′

is the set of variables that appear in φ. Notice, that because of the quantifier alternation in
the first formula, it cannot be manipulated such that it is directly an SMT query, which has no
quantifier alternation. However, the results in this chapter, demonstrate that SMT queries can
be used to gather enough information such that we can infer the required σ using an efficient
algorithm.

We will discuss fixed-point computation using the information derived from the local rea-
soning technique developed here in Sections 3.5 and 3.6.

50

OptimalSolutions(φ,Q)
1 Let Unk+(φ) be {ρ1, . . , ρa}.
2 Let Unk−(φ) be {η1, . . , ηb}.
3 S := ∅;
4 foreach 〈q1, . . , qa〉 ∈ Q(ρ1)× . .×Q(ρa):
5 φ′ := φ[ρi 7→ {qi}]i;
6 T := OptimalNegativeSolutions(φ′, Q);
7 S := S ∪ {σ | σ(ρi) = {qi}, σ(ηi) = t(ηi), t ∈ T};
8 R := {MakeOptimal(σ, S) | σ ∈ S};
9 R := Saturate(R,S);

10 return R;

Saturate(R,S)
1 while any change in R:
2 foreach σ1, σ2 ∈ R
3 σ := Merge(σ1, σ2, S); if (σ = ⊥) continue;

4 if 6 ∃σ′ ∈ R :
a∧
i=1

σ′(ρi)⇒ σ(ρi) ∧
b∧
i=1

σ(ηi)⇒ σ′(ηi)

5 R := R ∪ {MakeOptimal(σ, S)};
6 return R;

MakeOptimal(σ, S)

1 T := {σ′ | σ′ ∈ S ∧
b∧
i=1

σ(ηi)⇒ σ′(ηi)}

2 foreach σ′ ∈ T:
3 σ′′ := Merge(σ, σ′, S)
4 if (σ′′ 6= ⊥) σ := σ′′;
5 return σ

Merge(σ1, σ2, S)
1 Let σ be s.t. σ(ρi) = σ1(ρi) ∪ σ2(ρi) for i = 1 to a
2 and σ(ηi) = σ1(ηi) ∪ σ2(ηi) for i = 1 to b

3 T := {σ′ | σ′ ∈ S ∧
b∧
i=1

σ(ηi)⇒ σ′(ηi)}

4 if
∧

q1∈σ(ρ1),..,qa∈σ(ρa)

∃σ′ ∈ T s.t.
a∧
i=1

σ′(ρi) = {qi} return σ

5 else return ⊥

Figure 3.6: Procedure for generating optimal solutions given a template formula φ and a predicate-
map Q.

51

Definition 3.2 (Optimal Solution) Let φ be a formula with unknowns {vi}i where each vi is
either positive or negative. Let Q map each unknown vi to some set of predicates Q(vi). A map
{vi 7→ Qi}i is a solution (for φ over domain Q) if the formula φ is valid after each vi is replaced
by Qi, and Qi ⊆ Q(vi). A solution {vi 7→ Qi}i is optimal if replacing Qi by a strictly weaker or
stronger subset of predicates from Q(vi), for the case where vi is negative or positive, respectively,
results in a map that is no longer a solution.

Example 3.5 Consider the following formula φ with one negative unknown η.

i = 0 ⇒ (∀j : η ⇒ sel(A, j) = 0)

Let Q(η) be Qj,{0,i,n}. There are four optimal solutions for φ over Q. These map the negative
unknown variable η to {0 < j ≤ i}, {0 ≤ j < i}, {i < j ≤ 0}, and {i ≤ j < 0} respectively.

Since the naive exponential search for optimal solutions to a formula would be too expensive,
we next present a systematic search that we found to be efficient in practice.

The procedure described in Figure 3.6 returns the set of all optimal solutions for an input for-
mula φ over domainQ. The procedure OptimalSolutions uses an operation OptimalNegativeSolutions(φ,Q)
(discussed later), which returns the set of all optimal solutions for the special case when φ consists
of only negative unknowns. To understand how the procedure OptimalSolutions operates, it is
illustrative to think of the simple case when there is only one positive variable ρ. In this case, the
algorithm simply returns the conjunction of all those predicates q ∈ Q(ρ) such that φ[ρ 7→ {q}]
is valid. Observe that such a solution is an optimal solution, and this procedure is much more
efficient than naively trying out all possible subsets and picking the maximal ones.

Example 3.6 Consider the following formula φ with one positive unknown ρ.

(i ≥ n) ∧ (∀j : ρ⇒ sel(A, j) = 0)) ⇒
(∀j : 0 ≤ j < n⇒ sel(A, j) = 0)

Let Q(ρ) be Qj,{0,i,n}. There is one optimal solution for φ over Q, namely

ρ 7→ {0 ≤ j, j < n, j < i}

This is computed by the algorithm in Figure 3.6 as follows. At the end of the first loop (Lines 4-7),
the set S contains three solutions:

1: ρ 7→ {0 ≤ j}
2: ρ 7→ {j < n}
3: ρ 7→ {j < i}

The set R at the end of line 8 contains only one optimal solution:

ρ 7→ {0 ≤ j, j < n, j < i}

The set R is unchanged after the Saturate call, simply because it contains only one optimal
solution, while any change to R would require R to contain at least two optimal solutions.

Now, consider the case of one positive and one negative variable. In this case, the algorithm
invokes OptimalNegativeSolutions to find an optimal set of negative solutions for the negative
variable η, for each choice of predicate q ∈ Q(ρ) for the positive variable ρ, and stores these
solutions in set S (Lines 4-7). After this, it groups together all those solutions in S that match on
the negative variable to generate a set R of optimal solutions (Line 8). (Recall, from Definition 3.2,
that in an optimal solution a positive variable is mapped to a maximal set of predicates, while a
negative variable is mapped to a minimal set.) It then attempts to generate more optimal solutions
by merging the solutions for both the positive and negative variables of the optimal solutions in R
through the call to Saturate (Line 9).

52

Example 3.7 Consider the following formula φ with one positive unknown ρ and one negative
unknown η.

(η ∧ (i ≥ n) ∧ (∀j : ρ⇒ sel(A, j) = 0)) ⇒
(∀j : j ≤ m⇒ sel(A, j) = 0)

Let Q(η) and Q(ρ) both be Q{i,j,n,m}. There are three optimal solutions for φ over Q, namely

1: ρ 7→ {j ≤ m} , η 7→ ∅
2: ρ 7→ {j ≤ n, j ≤ m, j ≤ i}, η 7→ {m ≤ n}
3: ρ 7→ {j ≤ i, j ≤ m} , η 7→ {m ≤ i}

These are computed by the algorithm in Figure 3.6 as follows. At the end of the first loop (Lines 4-
7), the set S contains the following four solutions:

1: ρ 7→ {j ≤ m}, η 7→ ∅
2: ρ 7→ {j ≤ n} , η 7→ {m ≤ n}
3: ρ 7→ {j ≤ i} , η 7→ {m ≤ i}
4: ρ 7→ {j ≤ i} , η 7→ {m ≤ n}

The set R at the end of line 8 contains the following three optimal solutions:

1: ρ 7→ {j ≤ m} , η 7→ ∅
2: ρ 7→ {j ≤ n, j ≤ m, j ≤ i}, η 7→ {m ≤ n}
3: ρ 7→ {j ≤ i, j ≤ m} , η 7→ {m ≤ i}

The set R is unchanged by the call to Saturate (Line 9).

The extension to multiple positive variables involves considering a choice of all tuples of predicates
of appropriate size (Line 4), while the extension to multiple negative variables is not very different.

The proof of correctness of the OptimalSolutions procedure described here is given in
Appendix A.3, and we encourage the reader to go through it to get a better understanding of the
working of the procedure.

The OptimalNegativeSolutions operation This operation requires reasoning over the theories
that are used in the predicates, e.g., the theory of arrays, the bit vector theory, or linear arithmetic.
We use an SMT solver as a black box for such theory reasoning. Of several ways to implement
OptimalNegativeSolutions, we found it effective to implement OptimalNegativeSolutions(φ,Q)
as a breadth-first search on the lattice of subsets ordered by implication, with > and ⊥ being ∅ and
the set of all predicates, respectively. We start at > and keep deleting the subtree of every solution
discovered until no more elements remain to be searched. Furthermore, to achieve efficiency, one
can truncate the search at a certain depth. (We observed that the number of predicates mapped
to a negative variable in any optimal solution in our experiments was never greater than 4.) To
achieve completeness, the bounding depth can be increased iteratively after a failed attempt.

OptimalNegativeSolutions and predicate cover The operation OptimalNegative-Solutions as
we define above is a generalization of the predicate cover operation from standard predicate ab-
straction literature [129, 178]. Given a set of predicates Q0 and a formula φ, the predicate cover
operation finds the weakest conjunction of predicates from Q0 that implies it. This is illustrated
pictorially in Figure 3.7. Predicate cover is a fundamental operation used in the abstract trans-
formers while performing abstract interpretation over predicate abstraction [129]. The weakest
conjunction corresponds to the least number of predicates.

Note that this is exactly the output of OptimalNegativeSolutions((η ⇒ φ), {Q0}). Since
we deal with more general templates, i.e., with arbitrary boolean structure as opposed to just
conjunctive facts as in previous predicate abstraction literature, we need to generalize through
OptimalNegativeSolutions the notion of predicate cover to handle multiple negative unknowns.

53

Figure 3.7: The predicate cover operation. The lines indicate predicates and their negations. Pic-
torially, a predicate specifies one half-space and its negation the other half-space. For a given
formula—the light gray area—the predicate cover computed is the set of predicates corresponding
to the bold lines. The enclosed space by the predicate cover—the dark gray area—lies com-
pletely within area for the formula, indicating that the predicate cover implies the formula. Notice
that the computed predicate cover is the maximally weak possible over these predicates: leav-
ing out any predicate/line from the cover will merge areas outside of the formula. Notice that
in general there may be multiple maximally weak formulas and it is expected that the predicate
cover/OptimalNegativeSolutions procedure will output all incomparable ones.

Additionally, we also need to build another operation OptimalSolutions to handle positive un-
knowns as well.

The proof of correctness of the OptimalNegativeSolutions procedure described here is
again given in Appendix A.3, and we encourage the reader to go through it to get a better under-
standing of the design here.

In the following sections we use this OptimalSolutions interface to the SMT solver to build
fixed-point computation algorithms, two that iteratively approximate the solution (Section 3.5)
similar to traditional dataflow approaches and one that uses an encoding of the fixed-point as a
SAT formula (Section 3.6) similar to the approach in the previous chapter.

3.5 Iterative Propagation Based Algorithms

In this section, we present two iterative propagation based algorithms for discovering an
inductive invariant that establishes the validity of assertions in a given program.

The key insight behind these algorithms is as follows. Observe that the set of elements
that are instantiations of a given template with respect to a given set of predicates, ordered by
implication, forms a pre-order, but not a lattice. Our algorithms perform a standard data-flow
analysis over the powerset extension of this abstract domain (which forms a lattice) to ensure that
it does not miss any solution. Experimental evidence shows that the number of elements in this
powerset extension never gets beyond 6. Each step in the algorithm involves updating a fact at
a cut-point by using the facts at the neighboring cut-points (preceding or succeeding cut-points
in case of forward or backward data-flow, respectively). The update is done by generating the
verification condition that relates the facts at the neighboring cut-points with the template at the
current cut-point, and updating using the solutions obtained from a call to OptimalSolutions.

The two algorithms differ in whether they perform a forward or backward dataflow and
accordingly end up computing a least or greatest fixed point, respectively, but they both have the
following property.

54

LeastFixedPoint(Prog, Q)
1 Let σ0 be s.t. σ0(v) 7→ ∅, if v is negative

σ0(v) 7→ Q(v), if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∀σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ2) and θ := τ2σ ⇒ τ2.
7 S := S ∪ {σ′σ−1

t ∪ σp |
∧

σ′′∈S
τ2σ
′′ 6⇒ τ2σ

′σ−1
t ∧

σ′ ∈ OptimalSolutions(VC(〈τ1σ, δ, τ2〉) ∧ θ,Qσt)}
8 if S = ∅ return ‘‘No solution’’

9 else return σ ∈ S s.t. Valid(VC(Prog, σ))

(a) Least Fixed-Point Computation

GreatestFixedPoint(Prog)
1 Let σ0 be s.t. σ0(v) 7→ Q(v), if v is negative

σ0(v) 7→ ∅, if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∀σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ1) and θ := τ1 ⇒ τ1σ.
7 S := S ∪ {σ′ ∪ σp |

∧
σ′′∈S

τ1σ
′ 6⇒ τ1σ

′′ ∧

σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉) ∧ θ,Q)}
8 if S = ∅ return ‘‘No solution’’

9 else return σ ∈ S s.t. Valid(VC(Prog, σ))

(b) Greatest Fixed-Point Computation

Figure 3.8: Iterative algorithms for generating an invariant solution given program Prog and
predicate-map Q.

55

Theorem 3.1 (Correctness of Iterative Fixed-point Computation) Given a program Prog

and a predicate map Q, the algorithms in Figure 3.8 output an invariant solution, if there exists
one.

For notational convenience, we present the algorithms slightly differently. Each of these
algorithms (described in Figure 3.8) involve maintaining a set of candidate solutions at each step.
A candidate solution σ is a map of the unknowns v in all templates to some subset of Q(v), where
Q is the given predicate-map. The algorithms make progress by choosing a candidate solution
and replacing it by a set of weaker or stronger candidate solutions (depending on whether a
forward/least fixed-point or backward/greatest fixed-point technique is used) using the operation
OptimalSolutions defined in Section 3.4. The algorithms return an invariant solution whenever
any candidate solution σ satisfies the verification condition, i.e., Valid(VC(Prog, σ)), or fail when
the set of candidate solutions becomes empty.

The proof of Theorem 3.1 follows directly from the correctness of dataflow analyses [165].
The procedure OptimalSolutions serves as both the forward and backwards transfer function
by computing the optimal change that is required to the invariant at the endpoint of a path
(Theorem A.3). The fixed-point algorithms (Figure 3.8) implement a iterative work-list dataflow
computation. The lattice is the finite height lattice of maps ordered by the partial order v as
defined below. Line 7 in Figure 3.8(a) and Line 7 in Figure 3.8(b) implement the join operation.

Definition 3.3 (Ordering v of solutions) Given a template τ , two solutions σ1 and σ2 are
ordered as σ1 v σ2 iff ∀ρ ∈ Unk+(τ) : σ1[ρ]⇒ σ2[ρ] and ∀η ∈ Unk−(τ) : σ2[η]⇒ σ1[η].

We next discuss the two variants for computing least and greatest fixed-points, along with
an example.

3.5.1 Least Fixed-point

We now describe a least fixed-point approach that starts at the bottom of the lattice, and
refines the invariants to a weaker one in each iteration. It iterates until the candidate solution is
weak enough to be valid for given the precondition.

This algorithm (Figure 3.8(a)) starts with the singleton set containing the candidate solution
that maps each negative unknown to the empty set (i.e., true) and each positive unknown to the
set of all predicates. In each step, the algorithm chooses a σ that is not an invariant solution. Since
it is not an invariant solution, it must be the case that it does not satisfy at least one verification
condition. There must exist a (δ, τ1, τ2, σt) ∈ Paths(Prog) such that VC(〈τ1σ, δ, τ2σσt〉) is not
valid, because τ2σ is a too strong an instantiation for τ2. (This is because the loop on Line 3 in the
algorithm maintains the invariant that any assignment to τ2 at the end of a verification condition
is at least as strong as it can be given the verification condition and the assignment to τ1 at its
beginning.) The algorithm replaces the candidate solution σ by the solutions {σ′σ−1

t ∪ σp | σ′ ∈
OptimalSolutions(VC(〈τ1σ, δ, τ2〉) ∧ θ,Qσt)}, where σp is the projection of the map σ onto the
unknowns in the set Unk(Prog) − Unk(τ2) and θ (defined as τ2σ ⇒ τ2) ensures that only stronger
solutions are considered.

Example 3.8 Consider the ArrayInit program from Example 3.3. Let Q(v) = Qj,{0,i,n}. In the
first iteration of the while loop, S is initialized to σ0, and in Line 4 there is only one triple
in Paths(ArrayInit) whose corresponding verification condition is inconsistent, namely (i :=
0, true, ∀j : v ⇒ sel(A, j) = 0, σt), where σt is the identity map. Line 7 results in a call to
OptimalSolutions on the formula φ = (i = 0) ⇒ (∀j : v ⇒ sel(A, j) = 0), the result of which
has already been shown in Example 3.5. The set S now contains the following candidate solutions
after the first iteration of the while loop.

1: v 7→ {0 < j ≤ i}
2: v 7→ {0 ≤ j < i}
3: v 7→ {i < j ≤ 0}
4: v 7→ {i ≤ j < 0}

56

Of these, the candidate solution v 7→ {0 ≤ j < i} is a valid solution, and hence the while loop
terminates after one iteration.

3.5.2 Greatest Fixed-point

Similar to the least fixed-point computation in the previous section, we now present a
greatest fixed-point approach. The key difference is that instead of starting the iteration from the
bottom of the lattice, we instead start at the top and refine the invariants to a stronger one in each
iteration. It iterates until the candidate solution is strong enough to imply the postconditions. We
detail the approach here for completeness.

This algorithm (Figure 3.8(b)) starts with the singleton set containing the candidate solution
that maps each positive unknown to the empty set (i.e., true) and each negative unknown to the
set of all predicates. As above, in each step the algorithm chooses a σ that is not an invariant
solution. Since it is not an invariant solution, it must be the case that it does not satisfy at least one
verification condition. There must exist a (δ, τ1, τ2, σt) ∈ Paths(Prog) such that VC(〈τ1σ, δ, τ2σσt〉)
is not valid, because τ1σ is a too weak an instantiation for τ1. (This is because the loop on
Line 3 in the algorithm maintains the invariant that any assignment to τ1 at the beginning of
a verification condition is at least as weak as it can be given the verification condition and the
assignment to τ2 at its end.) The algorithm replaces the candidate solution σ by the solutions
{σ′∪σp | σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉)∧θ,Q)}, where σp is the projection of the map
σ onto the unknowns in the set Unk(Prog)−Unk(τ1) and θ (defined as τ1 ⇒ τ1σ) ensures that only
weaker solutions are considered.

Example 3.9 Consider the ArrayInit program from Example 3.3. Let Q(v) = Qj,{0,i,n}. In the
first iteration of the while loop, S is initialized to σ0, and in Line 4 there is only one triple in
Paths(ArrayInit) whose corresponding verification condition is inconsistent, namely (assume(i ≥
n),∀j : v ⇒ sel(A, j) = 0,∀j : 0 ≤ j < n ⇒ sel(A, j) = 0, σt), where σt is the identity map.
Line 7 results in a call to OptimalSolutions on the formula φ = (i ≥ n) ∧ (∀j : v ⇒ sel(A, j) =
0)⇒ (∀j : 0 ≤ j < n ⇒ sel(A, j) = 0), whose output is shown in Example 3.6. This results in S
containing only the following candidate solution after the first iteration of the while loop:

v 7→ {0 ≤ j, j < n, j < i}

The candidate solution v 7→ {0 ≤ j, j < n, j < i} is a valid solution, and hence the while loop
terminates after one iteration.

3.6 Satisfiability-based Algorithm

In this section, we show how to encode the verification condition of the program as a boolean
formula such that a satisfying assignment to the boolean formula corresponds to an inductive
invariant that establishes the validity of assertions in a given program. We describe how verification
conditions can be reduced to propositional constraints in two steps. We first describe the simpler
case of just conjunctive invariants (or k disjuncts each being conjunctive) in Section 3.6.1 and
then step up to an efficient reduction for arbitrary templates using OptimalNegativeSolutions

in Section 3.6.2.

3.6.1 SAT Encoding for Simple Templates

We first illustrate our approach by means of a simple example that discovers a single con-
junctive fact I and later extend that to boolean constraint generation for DNF formulae with k
disjuncts each, i.e., k-DNF.

Example Consider the program in Figure 3.9(a). The program loop iterates using the loop counter
x and increments an auxiliary variable y as well. Its control flow graph (CFG) is shown in Fig-

57

loop (int m) {
1 assume(m > 0);
2 x := 0; y := 0;
3 while (x < m) {
4 x++;
5 y++;
6 }
7 assert(y = m)

}

assert(y = m)

y
n

I

x := 0; y := 0

assume(m > 0)

x++; y++

x < m

(a) (b)

x++; y++

I

y n

assume(m > 0)

assert(y = m)

assume(x < m) assume(x ≥ m)

1

3

2

x := 0; y := 0

∗

(c)

1 → 2 : m > 0⇒ I[y → 0, x→ 0]

2 → 3 : I ∧ x ≥ m⇒ y = m

2 → 2 : I ∧ x < m⇒ I[y → y + 1, x→ x+ 1]

Q(I) =

x ≤ y, x ≥ y, x < y,
x ≤ m, x ≥ m, x < m
y ≤ m, y ≥ m, y < m

(d) (e)

Figure 3.9: Illustrative example for satisfiability-based reduction. (a) Iteration over x with an
auxiliary variable y (b) The control flow graph (CFG) with the loop invariant marked as I (c) The
CFG as modeled in our system. (d) Verification condition corresponding to each simple path. (e)
The set of predicates Q.

58

ure 3.9(b), and its equivalent using only non-deterministic branches, assumes, asserts, and assign-
ments is shown in Figure 3.9(c). There are three simple paths going from program entry to loop
header (1 → 2), around the loop (2 → 2), and loop header to program exit (2 → 3), and
the verification conditions they generate are shown in Figure 3.9(d). The set of predicates Q(I)
over which we seek to discover our inductive invariant is shown in Figure 3.9(e).

The first step is to associate with each predicate p ∈ Q(I) a boolean indicator variable bp
indicating p’s presence or absence in I. Then we consider each verification condition for each path
in turn and generate constraints on the indicator variables:

• Loop entry (1 → 2): The verification condition is m > 0⇒ I[y → 0, x→ 0], for which we
generate the constraint

¬bx<y ∧ ¬bx≥m ∧ ¬by≥m (Ex-1)

denoting that the predicates x < y and x ≥ m and y ≥ m cannot be in I since they are not
implied by the verification condition for loop entry.

• Loop exit (2 → 3): The verification condition is I∧x ≥ m⇒ y = m, for which we generate
the constraint

(by≥m ∧ by≤m) ∨ bx<m ∨ (bx≤y ∧ by≤m) (Ex-2)

denoting that either both y ≥ m and y ≤ m belong to I, or x < m belongs to I, or both
x ≤ y and y ≤ m belong to I. Observe that these are the only three (maximally-weak)
ways in which we can prove y = m under the assumption x ≥ m. Traditionally, these
different ways are computed by using the predicate cover operation (which we commented
on in Section 3.2).

• Inductive (2 → 2): The verification condition is I ∧ x < m⇒ I[y → y + 1, x→ x+ 1], for
which we generate the constraint

(by≤m ⇒ (by<m ∨ by≤x)) ∧ ¬bx<m ∧ ¬by<m (Ex-3)

denoting that if y ≤ m belongs to I, then either y < m or x ≤ y ∧ y ≤ x should also
belong to I, and that the predicates x < m and y < m cannot be in I. The reader can
easily check that this verification condition allows any other predicate p to be in I because
p ∧ x < m⇒ p[y → y + 1, x→ x+ 1].

These constraints are generated by considering each predicate p, finding the weakest condi-
tions, as boolean constraints bcp, over the set of predicates under which p ∧ x < m⇒ p[y →
y + 1, x → x + 1] and then generating the constraint that bp ⇒ bcp. For the predicates
x < m and y < m, the weakest boolean constraint is in fact false, and hence we generate
the constraints ¬bx<m and ¬by<m. For the predicate y ≤ m, the weakest boolean constraint
is by<m ∨ by≤x. For all other predicates, it is true.

Putting Eq. (Ex-1), (Ex-2), and (Ex-3) together we get a SAT formula over the boolean
indicator variables that encodes the verification condition of the program. The reader can verify
that bx≥y = bx≤y = by≤m = true (and all others false) is a satisfying solution. This corresponds
to I being (x = y ∧ y ≤ m).

3.6.1.1 Encoding VCs as SAT for Simple Templates

We now describe a SAT encoding for discovering inductive invariants Iπ that can be de-
scribed using a relatively simple k-DNF formula over a given predicate map Q. In the next
section, we will describe a reduction for general templates (and we will have to use the more gen-
eral OptimalNegativeSolutions procedure instead of just predicate cover). In the k-DNF case,
we can represent an invariant I at program point π by k× s boolean indicator variables bπi,p (where
1≤i≤k, p ∈ Q(I), s = |Q(I)|). The boolean variable bπi,p denotes whether predicate p is present

in the ith disjunct of the invariant I at program point π, which we indicate as Iπ here. We show

59

how to encode the verification condition of the program as a boolean formula ψ over the boolean
indicator variables bπi,p. The boolean formula ψProg is satisfiable iff there exist inductive invariants
(in k-DNF form) strong enough to prove the validity of the assertions.

We first show how to encode the verification condition of any simple path δ as a boolean
formula ψδ. But first, let us observe that the verification condition for any simple path δ between
π1 and π2 simplifies to the following form:

Iπ1 ⇒ (G⇒ Iπ2) (3.1)

where and G are known formulas obtained from the predicates that occur on the path δ. For
reducing verification condition, the following three cases arise, which we consider in increasing
order of difficulty:

Case 1 (Path between program entry and a cut-point) The verification condition in Eq. 3.1 simplifies

to the following form after substituting Iπ1 = true and expanding Iπ2 as
k∨
j=1

Iπ2
j , where each

Iπ1
j is conjunction of some predicates from Q(Iπ1).

G⇒

 k∨
j=1

Iπ2
j

The above constraint restricts how strong Iπ2 can be. Essentially, if some selection of
predicates q1, . . , qk are present in each of the disjuncts (i.e., their corresponding indica-
tors bπ2

1,q1
, . . , bπ2

1,q1
are true), then it better be the case that their disjunction is implied by G.

Formally, if q1 ∈ Iπ2
1 , . . . , qk ∈ Iπ2

k , then it must be the case that G⇒
k∨
j=1

qj . Hence, we can

rewrite the above constraint as:

∧
p1,..,pk∈Q(Iπ2)

(

k∧
j=1

bπ2
j,pj

)⇒ (G⇒
k∨
j=1

pj)

 (3.2)

This can be encoded as the following boolean constraint ψ(δ) over boolean indicator variables
bπ2
i,p.

ψδ =
∧

p1,..,pk∈Q

(

k∧
j=1

bπ2
j,pj

)⇒ bval(G,
k∨
j=1

pj)

 (3.3)

where bval(A,B) is an indicator function that output the truth value (true or false) of
A⇒ B.

Case 2 (Path between a cut-point and program exit) The verification condition in Eq. 3.1 simplifies

to the following form after substituting Iπ2 = true and expanding Iπ1 as
k∨
j=1

Iπ1
j , where each

Iπ1
j is conjunction of some predicates from Q(Iπ1).(

k∨
i=1

Iπ1
i

)
⇒ G or, equivalently,

k∧
i=1

(Iπ1
i ⇒ G)

The above constraint restricts how weak Iπ1
i can be. We can encode the above constraint as

a boolean formula over the variables bπi,p by considering the predicate cover of G. To recall,
the predicate cover, denoted by pred cover(F), of a formula F over a set of predicates is the
weakest conjunctive formula over the predicates that implies F . Let φ(F, preds, i, π) denote

60

the boolean formula over boolean variables bπi,p obtained after replacing each predicate p in
pred cover(F) by bπi,p. For example, if the predicate cover is x ≤ y ∧ y ≤ m, then this
boolean function is bπi,x≤y ∧ bπi,y≤m. The verification condition above can now be encoded as
the following boolean constraint ψδ over boolean indicator variables bπ1

i,p.

ψδ =

k∧
i=1

φ(G,Q(Iπ1), i, π1) (3.4)

Case 3 (Path between two adjacent cut-points) We now combine the key ideas that we used in the
above two cases to handle this more general case. The verification condition in Eq. 3.1 has

the following form (after expanding Iπ1 as
k∨
i=1

Iπ1
i and Iπ2 as

k∨
j=1

Iπ2
j , where each Iπ1

i and Iπ2
j

is a conjunction of some predicates from Q(Iπ1) and Q(Iπ2), respectively).(
k∨
i=1

Iπ1
i

)
⇒

G⇒ k∨
j=1

Iπ2
j

or, equivalently,

k∧
i=1

Iπ1
i ⇒

G⇒ k∨
j=1

Iπ2
j

 (3.5)

Using the same argument as in Case 1, the above constraint can be rewritten as:

k∧
i=1

∧
p1,..,pk∈Q(Iπ2)

(

k∧
j=1

bπ2
j,pj

)⇒

Iπ1
i ⇒ (G⇒

k∨
j=1

pj)

Now, using the argument as in Case 2, the verification condition above can be encoded as
the following boolean constraint ψδ over boolean indicator variables bπ1

i,p and bπ2
i,p:

ψδ =

k∧
i=1

∧
p1,..,pk∈Q

(

k∧
j=1

bπ2
j,pj

)⇒ φ

(G⇒
k∨
j=1

pj), Q(Iπ1), i, π1

 (3.6)

The desired boolean formula ψProg is now given by the conjunction of formulas ψδ for all simple
paths δ in the program.

Observe that the constraints are generated locally from the verification condition of each
simple path. Hence, the satisfiability-based technique has the potential for efficient incremental
verification, i.e., verification of a modified version of an already verified program, with support of
an incremental SAT solver.

The next section describes a generalization of the reduction here to work over templates with
arbitrary boolean structure, as opposed to just DNF, and will therefore use OptimalNegativeSolutions
as opposed to predicate cover as we did here.

3.6.2 SAT Encoding for General Templates

For every unknown variable v and any predicate q ∈ Q(v), we introduce a boolean variable
bvq to denote whether the predicate q is present in the solution for v. We show how to encode the
verification condition of the program Prog using a boolean formula ψProg over the boolean variables
bvq . The boolean formula ψProg is constructed by making calls to OptimalNegativeSolutions,
which is our theorem proving interface, and the constructed formula has the property that if it is
satisfiable if and only if the program has invariants that are instantiations of the template using
the predicate map Q (as we show in Theorem 3.2).

61

Notation Given a mapping {vi 7→ Qi}i (where Qi ⊆ Q(vi)), let BC({vi 7→ Qi}i) denote the
boolean formula that constrains the unknown variable vi to contain all predicates from Qi.

BC({vi 7→ Qi}i) =
∧

i,q∈Qi

bviq

3.6.2.1 Encoding VCs as SAT using OptimalNegativeSolutions

We first show how to generate the boolean constraint ψδ,τ1,τ2 that encodes the verification
condition corresponding to any tuple (δ, τ1, τ2, σt) ∈ Paths(Prog). Let τ ′2 be the template that is
obtained from τ2 as follows. If τ2 is different from τ1, then τ ′2 is same as τ2, otherwise τ ′2 is obtained
from τ2 by renaming all the unknown variables to fresh unknown variables with orig denoting the
reverse mapping that maps the fresh unknown variables back to the original. This renaming is
important to ensure that each occurrence of an unknown variable in the formula VC(〈τ1, δ, τ ′2〉) is
unique. Note that each occurrence of an unknown variable in the formula VC(〈τ1, δ, τ2〉) may not
be unique when τ1 and τ2 refer to the same template, which is the case when the path δ goes
around a loop.

A simple approach would be to use OptimalSolutions to compute all valid solutions for
VC(〈τ1, δ, τ ′2〉) and encode their disjunction. But because both τ1 and τ ′2 are uninstantiated un-
knowns, the number of optimal solutions explodes. We describe below an efficient construction
that involves invoking OptimalNegativeSolutions only over formulae with a smaller number of
unknowns (the negative) for a small choice of predicates for the positive variables. The reduction
is a generalization of the construction presented in the previous section.

Let ρ1, . . , ρa be the set of positive variables and let η1, . . , ηb be the set of negative variables
in VC(〈τ1, δ, τ ′2〉). Consider any positive variable ρi and any qj ∈ Q′(ρi), where Q′ is the map that
maps an unknown v that occurs in τ1 to Q(v) and an unknown v that occurs in τ2 to Q(v)σt.
We require the predicate maps for the positive unknowns contain a predicate true. Consider the
partial map σ{ρi,qj}i,j that maps ρi to {qj}, i.e., maps all positive variables in the formula to some

single predicate from their possible set. Let S
{ρi,qj}i,j
δ,τ1,τ2

be the set of optimal solutions returned
after invoking the procedure OptimalNegativeSolutions on the formula VC(〈τ1, δ, τ ′2〉)σ{ρi,qj}i,j
as below:

S
{ρi,qj}i,j
δ,τ1,τ2

= OptimalNegativeSolutions(VC(〈τ1, δ, τ ′2〉)σ{ρi,qj}i,j , Q
′)

The following Boolean formula ψδ,τ1,τ2,σt encodes the verification condition corresponding
to (δ, τ1, τ2, σt).

ψδ,τ1,τ2,σt =
∧

ρi,qj∈Q′(ρi)

(∧
ρi

b
orig(ρi)

qjσ
−1
t

)
⇒

∨
{ηk 7→Qk}k∈S

{ρi,qj}i,j
δ,τ1,τ2

BC({orig(ηk) 7→ Qkσ
−1
t }k)

 (3.7)

This encoding makes use of the fact that there is an indicator variable for the empty set, corre-
sponding to the predicate true, which is semantically identical to the empty set. Consequently,
the antecedent will always be non-trivial.

The verification condition of the entire program is now given by the following boolean
formula ψProg, which is the conjunction of the verification conditions of all tuples (δ, τ1, τ2, σt) ∈
Paths(Prog).

ψProg =
∧

(δ,τ1,τ2,σt)∈Paths(Prog)

ψδ,τ1,τ2,σt (3.8)

Example 3.10 Consider the ArrayInit program from Example 3.3. Let Q(v) = Qj,{0,i,n}. The
above procedure leads to generation of the following constraints.

62

Entry Case The verification condition corresponding to this case contains one negative variable
v and no positive variable. The set Sδ,τ1,τ2 is same as the set S in Example 3.8, which contains 4
optimal solutions. The following boolean formula encodes this verification condition.

(bv0≤j ∧ bvj<i) ∨ (bv0<j ∧ bvj≤i) ∨ (bvi≤j ∧ bvj<0) ∨ (bvi<j ∧ bvj≤0) (3.9)

Exit Case The verification condition corresponding to this case contains one positive variable v
and no negative variable. We now consider the set Sv,qδ,τ1,τ2 for each q ∈ Q(v). Let P = {0 ≤ j, j <
i, j ≤ i, j < n, j ≤ n}. If v ∈ P , the set Sv,qδ,τ1,τ2 contains the empty mapping (i.e., the resultant

formula when v is replaced by q is valid). If v ∈ Q(v) − P , the set Sv,qδ,τ1,τ2 is the empty set (i.e.,
the resultant formula when v is replaced by q is not valid). The following boolean formula encodes
this verification condition. ∧

q∈P
(bvq ⇒ true) ∧

∧
q∈Q(v)−P

(bvq ⇒ false)

which is equivalent to the following formula

¬bv0<j ∧ ¬bvi<j ∧ ¬bvi≤j ∧ ¬bvn<j ∧ ¬bvn≤j ∧ ¬bvj<0 ∧ ¬bvj≤0 (3.10)

Inductive Case The verification condition corresponding to this case contains one positive variable
v and one negative variable v′ obtained by renaming one of the occurrences of v. Note that Sδ,τ1,τ2
contains a singleton mapping that maps v′ to the empty set. Also, note that Sv,j≤iδ,τ1,τ2

is the empty

set, and for any q ∈ Q(v′) − {j ≤ i}, Sv,qδ,τ1,τ2 contains at least one mapping that maps v′ to the
singleton {qσt}. Hence, the following boolean formula encodes this verification condition.

(bvj≤i ⇒ false) ∧
∧

q∈Q(v′)−{j≤i}

(
bvq ⇒ (bvq ∨ . . .)

)
which is equivalent to the formula

¬bvj≤i (3.11)

The boolean assignment where bv0≤j and bvj<i are set to true, and all other boolean variables
are set to false satisfies the conjunction of the boolean constraints in Eq. 3.9,3.10, and 3.11. This
implies the solution {0 ≤ j, j < i} for the unknown v in the invariant template.

The construction of the boolean constraint defined above satisfies the following property.

Theorem 3.2 The boolean formula ψProg (Eq. 3.8) is satisfiable iff there exists an invariant solu-
tion for program Prog over predicate-map Q.

In the interest of continuity, we present the proof of this theorem in Section A.4 (Ap-
pendix A.3).

3.7 Specification Inference

In this section, we address the problem of discovering maximally weak preconditions and
maximally strong postconditions that fit a given template and ensure that all assertions in a
program are valid.

3.7.1 Maximally Weak Pre- and Maximally Strong Postconditions

We first recap the definitions of maximally weak preconditions and maximally strong post-
conditions from the previous chapter by stating them formally.

63

GreatestFixedPointAll(Prog)
1 Let σ0 be s.t. σ0(v) 7→ Q(v), if v is negative

σ0(v) 7→ ∅, if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∃σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))}
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ1).

7 S := S ∪ {σ′ ∪ σp |
∧

σ′′∈S
τ1σ
′ 6⇒ τ1σ

′′ ∧

σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉), Q)
8 return S;

(a) Iterative Greatest Fixed-Point Computation

OptimallyWeakSolutions(Prog)
1 φ := φProg;
2 S := ∅;
3 while SAT(φ)
4 φ′ := φ;
5 while SAT(φ′)
6 s := SAT(φ′);
7 weak := (τe s⇒ τe) ∧ ¬(τe ⇒ τe s);
8 φ′ := φ ∧ Boolify(weak)
9 S := S ∪ {s};

10 φ := φ ∧ ¬Boolify(τe ⇒ τe s)
11 return S;

(b) Satisfiability-based Weakest Precondition Inference

Figure 3.10: Weakest precondition inference algorithms (a) using an iterative approach (described
in terms of the procedure OptimalSolutions) (b) using a satisfiability-based approach that iter-
atively generates an increasingly weaker solution from a starting candidate.

64

LeastFixedPointAll(Prog, Q)
1 Let σ0 be s.t. σ0(v) 7→ ∅, if v is negative

σ0(v) 7→ Q(v), if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∃σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ2).

7 S := S ∪ {σ′σ−1
t ∪ σp |

∧
σ′′∈S

τ2σ
′′ 6⇒ τ2σ

′σ−1
t ∧

σ′ ∈ OptimalSolutions(VC(〈τ1σ, δ, τ2〉), Qσt)}
8 return S;

(a) Iterative Least Fixed-Point Computation

OptimallyStrongSolutions(Prog)
1 φ := φProg;
2 S := ∅;
3 while SAT(φ)
4 φ′ := φ;
5 while SAT(φ′)
6 s := SAT(φ′);
7 strong := (τe ⇒ τe s) ∧ ¬(τe s⇒ τe)
8 φ′ := φ ∧ Boolify(strong)
9 S := S ∪ {s};

10 φ := φ ∧ ¬Boolify(τe s⇒ τe)
11 return S;

(b) Satisfiability-based Strongest Postcondition Inference

Figure 3.11: Strongest postcondition inference algorithms (a) using an iterative approach (de-
scribed in terms of the procedure OptimalSolutions) (b) using a satisfiability-based approach
that iteratively generates an increasingly stronger solution from a starting candidate.

65

Definition 3.4 (Maximally Weak Precondition) Given a program Prog with assertions, in-
variant templates at each cutpoint, and a template τe at the program entry, we seek to infer a
solution(s) σ to the unknowns in the templates such that

• σ is a valid solution, i.e. Valid(VC(Prog, σ)).

• For any solution σ′, it is not the case that τeσ
′ is strictly weaker than τeσ, i.e.,

∀σ′ : (τeσ ⇒ τeσ
′ ∧ τeσ′ 6⇒ τeσ)⇒ ¬Valid(VC(Prog, σ′))

Definition 3.5 (Maximally Strong Postcondition) Given a program Prog, invariant tem-
plates at each cutpoint, and a template τe at program exit, we seek to infer a solution(s) σ to
the unknowns in the templates such that

• σ is a valid solution, i.e. Valid(VC(Prog, σ)).

• For any solution σ′, it is not the case that τeσ
′ is strictly stronger than τeσ, i.e.,

∀σ′ : (τeσ
′ ⇒ τeσ ∧ τeσ 6⇒ τeσ

′)⇒ ¬Valid(VC(Prog, σ′))

We now discuss how the iterative greatest and least fixed-point approaches can be extended
to generate maximally weak preconditions and maximally strong postconditions, respectively.

Greatest fixed-points for maximally weak preconditions The greatest fixed-point based iterative
technique described in Section 3.5.2 can be extended to generate maximally weak solutions as
described in Figure 3.10(a). The only difference is that instead of generating only one maximally
weak solution, we generate all maximally weak solutions (as is illustrated by the change in the
while-loop condition in Figure 3.10(a) compared to that in Figure 3.8(b)).

Least fixed-points for maximally strong postconditions The least fixed-point based iterative tech-
nique described in Section 3.5.1 can be extended to generate maximally strong solutions as de-
scribed in Figure 3.11(a). The only difference is that instead of generating only one maximally
strong solution, we generate all maximally strong solutions (as is illustrated by the change in the
while-loop condition in Figure 3.11(a) compared to that in Figure 3.8(a)).

The satisfiability-based approach can also be extended to compute solutions is based on a
finite encoding that is similar to the approach for linear arithmetic (Section 2.4).

Satisfiability-based technique for maximally weak pre- and maximally strong postconditions The
satisfiability-based technique described in Section 3.6 can be extended to generate maximally weak
and maximally strong solutions as described in Figure 3.10(b) and Figure 3.11(b), respectively.
The key idea is to first generate a boolean formula φ that encodes the verification condition of the
program (Line 1) with the additional constraint that φ is not stronger than any of the maximally
weak solutions already found (Line 10); or not weaker than any of the maximally strong solutions
already found, respectively. Then, we construct a boolean formula φ′ that encodes the additional
constraint that the precondition τe should be strictly weaker or stronger than τe s (Line 8), where
s is the last satisfying solution. If the formula φ′ is satisfiable, we update s to the new satisfying
solution (Line 6). We repeat this process in the inner loop (Lines 5-8) until the satisfying assignment
s can be made weaker (for maximally weak precondition inference) and can be made stronger (for
maximally strong postcondition inference).

3.8 Evaluation

We built a tool, called VS3
PA, that implements the algorithms described in this chapter. We

used the tool to verify and infer properties of various difficult benchmarks in our experiments.

66

Benchmark Assertion proved

Consumer Producer ∀k : 0 ≤ k < n⇒ C[k] = P [k]

Partition Array
∀k : 0 ≤ k < j ⇒ B[k] 6= 0
∀k : 0 ≤ k < l⇒ A[k] = 0

List Init, Del, Insert ∀k : x; k ∧ k 6= ⊥ ⇒ k → val = 0

Table 3.2: The assertions proved for verifying simple array/list programs.

Benchmark LFP GFP CFP Previous

Consumer Producer 0.45 2.27 4.54 45.00 [155]
Partition Array 2.28 0.15 0.76 7.96 [155], 2.4 [31]

List Init 0.15 0.06 0.15 24.5 [138]
List Delete 0.10 0.03 0.19 20.5 [138]
List Insert 0.12 0.30 0.25 23.9 [138]

Table 3.3: Time taken for verification of data-sensitive array and list programs.

We ran our experiments on a 2.5GHz Intel Core 2 Duo machine with 4GB of memory. We
evaluated the performance of our algorithms over two sets of benchmark analyses. The first set
consists of analyses that have been previously considered using alternative techniques. This serves
to compare our technique based on SMT solvers against more traditional approaches. The second
set consists of analyses that have not been feasible before.

3.8.1 Templates and Predicates

VS3
PA takes as input a program and a global set of templates and predicates. The global

template is associated with each loop header (cut-point) and the global set of predicates with each
unknown in the templates. We use a global set to reduce annotation burden, possibly at the cost
of efficiency. The tool could potentially find solutions faster if different predicate sets were used for
each invariant location, but the additional annotation burden would have been too cumbersome.
For each benchmark program, we supplied the tool with a set of templates, whose structure is
very similar to the program assertions (usually containing one unquantified unknown and a few
quantified unknowns, as in Figures 3.1, 3.2, 3.3, and 3.4) and a set of predicates consisting of
inequality relations between relevant program and bound variables.

3.8.2 Verifying standard benchmarks

We consider small but complicated programs that manipulate unbounded data structures.
These programs have been considered in state-of-the-art alternative techniques that infer data-
sensitive properties of programs.

Simple array/list manipulation: We present the performance of our algorithms on small but dif-
ficult programs manipulating arrays and lists. These benchmarks were culled from papers on
state-of-the-art alternative techniques for verification. Table 3.2 presents the assertions that are
proved by our algorithm. By adding axiomatic support for reachability, we were able to verify
simple list programs illustrating our extensibility. Table 3.3 presents the benchmark examples,
the time in seconds taken by each of our algorithm (least fixed-point, greatest fixed-point and
satisfiability-based) and the time reported by previous techniques2.

2We present the running times for previous techniques with the caveat that these numbers are potentially
incomparable because of the differences in experimental setups and because some techniques infer predicates, possibly

67

Benchmark Assertion proved

Selection Sort
Bubble Sort (n2)

∀k1, k2 : 0 ≤ k1 < k2 < n⇒ A[k1] ≤ A[k2]

Insertion Sort
Bubble Sort (flag)

∀k : 0 ≤ k < n⇒ A[k] ≤ A[k+1]

Table 3.4: The assertions proving that sorting programs output sorted arrays.

Time (s)
Benchmark LFP GFP CFP Previous

Selection Sort 1.32 6.79 12.66 na3

Insertion Sort 14.16 2.90 6.82 5.38 [146]3

Bubble Sort (n2) 0.47 0.78 1.21 na
Bubble Sort (flag) 0.22 0.16 0.55 na
Quick Sort (inner) 0.43 4.28 1.10 42.2 [138]
Merge Sort (inner) 2.91 2.19 4.92 334.1 [138]

Table 3.5: Time in seconds to verify sortedness for sorting programs.

Consumer Producer [155] is a loop that non-deterministically writes (produces) a new value
into buffer at the head or reads (consumes) a value at the tail; we verify that the values read by
the consumer are exactly those that are written by the producer. Partition Array [31, 155] splits
an array into two separate arrays, one containing the zero entries and the other the non-zero; we
verify that the resulting arrays indeed contain zero and non-zero entries. List Init [138] initializes
the val fields of a list to 0; we verify that every node reachable from the head has been initialized.
List Delete [138] (respectively, List Insert [138]) assumes a properly initialized list and deletes
(respectively inserts) a properly initialized node; we verify that the resulting lists still have val
fields as 0.

Sortedness property: We choose sorting for our benchmark comparisons because these are some
of the hardest verification instances for array programs that have been attempted by previous
techniques. We verify sortedness for all major sorting procedures. Table 3.4 presents the assertions
that we proved for these procedures.

Table 3.5 presents the benchmark examples, the time taken in seconds by our algorithms
(least fixed-point, greatest fixed-point and satisfiability-based) to verify that they indeed output a
sorted array and previously reported timings. We evaluate over selection, insertion and bubble sort
(one that iterates n2 times irrespective of array contents, and one that maintains a flag indicating
whether the inner loop swapped any element or not, and breaks if it did not). For quick sort and
merge sort we consider their partitioning and merge steps, respectively.

We do not know of a single technique that can uniformly verify all sorting benchmarks as
is possible here. In fact, the missing results indicate that previous techniques are not robust and
are specialized to the reasoning required for particular programs. In contrast, our tool successfully
verified all programs that we attempted. Also, on time, we outperform the current state-of-the-art.

using hints. However, these comparisons substantiate the robustness of our approach in being able to infer invariants
for all benchmarks, which individually required specialized theories earlier.

3[138] and [155] present timing numbers for the inner loops that are incomparable to the numbers for the entire
sorting procedure that we report here. For the inner loops of selection sort and insertion sort, our algorithms run in
time 0.34(LFP), 0.16(GFP), 0.37(CFP) for selection sort compared to 59.2 [138] and in time 0.51(LFP), 1.96(GFP),
1.04(CFP) for insertion sort compared to 35.9 [138] and 91.22 [155].

68

Benchmark Assertion proved

Selection, Insertion,
Bubble (n2, flag),
Quick (inner) Sort

∀y∃x : 0 ≤ y < n⇒ Ã[y] = A[x] ∧ 0 ≤ x < n

Merge Sort (inner)
∀y∃x : 0 ≤ y < m⇒ A[y] = C[x] ∧ 0 ≤ x < t
∀y∃x : 0 ≤ y < n⇒ B[y] = C[x] ∧ 0 ≤ x < t

Table 3.6: The assertions proved for verifying that sorting programs preserve the elements of the
input. Ã is the array A at the entry to the program.

Time (s)
Benchmark LFP GFP CFP

Selection Sort 22.69 17.02 timeout
Insertion Sort 2.62 94.42 19.66
Bubble Sort (n2) 5.49 1.10 13.74
Bubble Sort (flag) 1.98 1.56 10.44
Quick Sort (inner) 1.89 4.36 1.83
Merge Sort (inner) timeout 7.00 23.75

Table 3.7: Time in seconds to verify preservation (∀∃) for sorting programs.

3.8.3 Proving ∀∃, worst-case bounds, functional correctness

We now present analyses for which no previous techniques are known. We handle three new
analyses: ∀∃ properties verifying that sorting programs preserve the input elements, generating
maximally weak preconditions for worst case upper bounds and functional correctness.

There are two key features of our algorithms that facilitate new and expressive analyses.
The first is the ability to handle templates with arbitrary quantification to allow ∀∃ reasoning.
Using this we verify preservation properties of sorting algorithms. The second, and arguably the
more important characteristic, is the generation of greatest and least fixed-point solutions. We
generate worst case upper bounds and maximally weak preconditions for functional correctness.
Our experiments have shown that a satisfiability-based approach to generating least and greatest
fixed-points gets stuck in the iterative process of making a solution optimal (inner loop of the
algorithm in Figure 3.10(b)). We therefore restrict the use of the satisfiability-based approach to
verification problems with the understanding that for maximally weak precondition it results in a
time out.

∀∃ properties: Under the assumption that the elements of the input array are distinct, we prove
the sorting algorithms do not lose any elements of the input. The proof requires discovering ∀∃
invariants (Table 3.6). The running times are shown in Table 3.7. Except for two runs that
timeout, all three algorithms efficiently verify all instances.

Worst-case upper bounds: We have already seen that the worst-case input for Selection Sort
involves a non-trivial precondition that ensures that a swap occurs every time it is possible (line
7 of Figure 3.3). For Insertion Sort we assert that the copy operation in the inner loop is always
executed. For the termination checking version of Bubble Sort we assert that after the inner
loop concludes the swapped flag is always set. For the partitioning procedure in Quick Sort (that
deterministically chooses the leftmost element as the pivot), we assert that the pivot ends up at
the rightmost location. All of these assertions ensure the respective worst-case runs occur.

We generate the maximally weak preconditions for each of the sorting examples as shown
in Table 3.8. Notice that the inner loop of merge sort and the n2 version of bubble sort always

69

Benchmark Precondition inferred

Selection Sort
∀k : 0 ≤ k < n−1⇒ A[n−1] < A[k]
∀k1, k2 : 0≤k1<k2<n−1⇒ A[k1] < A[k2]

Insertion Sort ∀k : 0 ≤ k < n−1⇒ A[k] > A[k+1]

Bubble Sort (flag) ∀k : 0 ≤ k < n−1⇒ A[k] > A[k+1]

Quick Sort (inner) ∀k1, k2 : 0 ≤ k1 < k2 ≤ n⇒ A[k1] ≤ A[k2]

Table 3.8: The preconditions inferred by our algorithms for worst case upper bounds runs of sorting
programs.

Benchmark Time (s)

Selection Sort 16.62
Insertion Sort 39.59
Bubble Sort (n2) 0.00
Bubble Sort (flag) 9.04
Quick Sort (inner) 1.68
Merge Sort (inner) 0.00

Table 3.9: Time in seconds to infer preconditions for worst-case upper bounds of sorting programs.

perform the same number of writes, and therefore no assertions are present and the precondition
is true. The time taken is shown in Table 3.9, and is reasonable for all instances.

Functional correctness: Often, procedures expect conditions to hold on the input for functional
correctness. These can be met by initialization, or by just assuming facts at entry. We consider
the synthesis of the maximally weak such conditions. Table 3.10 lists our programs, the interesting
non-trivial preconditions (pre) we compute under the functional specification (post) supplied as
postconditions. (We omit other non-interesting preconditions that do not give us more insights
into the program but are generated by the tool nonetheless while enumerating maximally weak
preconditions.) Table 3.11 lists the time taken to compute the preconditions.

Array Init initializes the locations 0 . . . n while the functional specification expects initializa-
tion from 0 . . .m. Our algorithms, interestingly, generate two alternative preconditions, one that
makes the specification expect less, while the other expects locations outside the range to be pre-
initialized. Init Synthesis computes the index of the maximum array value. Restricting to equality
predicates we compute two incomparable preconditions that correspond to the missing initializers.
Notice that the second precondition is indeed maximally weak for the specification, even though
max could be initialized out of bounds. If we expected to strictly output an array index and not
just the location of the maximum, then the specification should have contained 0 ≤ max < n.
Binary Search is the standard binary search for the element e with the correctness specification
that if the element was not found in the array, then the array does not contain the element. We
generate the precondition that the input array must have been sorted. Merge Sort (inner) outputs
a sorted array. We infer that the input arrays must have been sorted for the procedure to be
functionally correct.

3.8.4 Properties of our algorithms

Statistical properties: We statistically examined the practical behavior our algorithms to explain
why they work well despite the theoretical bottlenecks. We accumulated the statistics over all
analyses and for all relevant modes (iterative and satisfiability-based).

70

!

"
!
!
!
!

#
!
!
!
!

$
!
!
!
!

%
!
!
!
!

"
"
!

"
!
!

"
!
!
!
&
'
()

!"#$%&'()'*"%&+%,

-
+#

%
'+
.
'/

+0
0+
,%
1
(
.
2
,'

30
(
4
',
1
5
0%
6

(a
)

D
is

tr
ib

u
ti

on
of

n
u

m
b

er
of

S
M

T
q
u

er
ie

s
ov

er
th

e
ti

m
e

ta
ke

n
b
y

ea
ch

.

!

"
!
!
!

#
!
!
!

$
!
!
!

%
!
!
!

"
#

$
%

&
'
()

!"#$%&'()'*(+",-(./

!
"
#
$
%
&'
(
)'
0
&%
1
-2
3
,%
/'

-.
'%
3
24
'/
(
+"
,-
(
.

(b
)

D
is

tr
ib

u
ti

o
n

o
f

n
u

m
b

er
o
f

in
co

m
p

a
ra

b
le

so
lu

ti
o
n

s
g
en

er
a
te

d
fo

r
ea

ch
ca

ll
to

O
p
t
i
m
a
l
N
e
g
a
t
i
v
e
S
o
l
u
t
i
o
n
s
.

!

"
!
!

#
!
!

$
!
!

"

#

$

%

&

'

(

)*+,

!"#$%&'()'*+,,-

!
"
#
$
%
&'
(
)'

(
&.
/
(
0
(
1
+
,'
-(
,"
.2
(
1
-

(c
)

D
is

tr
ib

u
ti

o
n

o
f

n
u

m
b

er
o
f

in
co

m
p

a
ra

b
le

so
lu

ti
o
n

s
g
en

er
a
te

d
fo

r
ea

ch
ca

ll
to

O
p
t
i
m
a
l
S
o
l
u
t
i
o
n
s
.

05010
0

15
0

20
0

Number of steps

N
um

be
r o

f C
an

di
da

te
s

(d
)

D
is

tr
ib

u
ti

on
of

th
e

si
ze

o
f

th
e

ca
n

d
id

a
te

se
t

ac
ro

ss
it

er
a
ti

o
n

s.

!"#$%

&
!

'
!

&
!
!

'
!
!

(
)
*+

!"#$%&'()'*+,-.+/%,
0
*1
%
'(
)'
0
2
3
')
(
&#

"
4.

(e
)

D
is

tr
ib

u
ti

o
n

o
f

th
e

si
ze

s
o
f

th
e

S
A

T
fo

rm
u

la
in

te
rm

s
o
f

th
e

n
u
m

b
er

o
f

cl
a
u

se
s.

F
ig

u
re

3.
12

:
S

ta
ti

st
ic

a
l

p
ro

p
er

ti
es

o
f

o
u

r
a
lg

o
ri

th
m

s
ov

er
p

re
d

ic
a
te

a
b

st
ra

ct
io

n
.

71

Benchmark Preconditions inferred under given postcondition

Partial Init
pre:

(a) m ≤ n
(b) ∀k : n ≤ k < m⇒ A[k] = 0

post: ∀k : 0 ≤ k < m⇒ A[k] = 0

Init Synthesis
pre:

(a) i = 1 ∧max = 0
(b) i = 0

post: ∀k : 0 ≤ k < n⇒ A[max] ≥ A[k]

Binary Search
pre: ∀k1, k2 : 0 ≤ k1 < k2 < n⇒ A[k1] ≤ A[k2]
post: ∀k : 0 ≤ k < n⇒ A[k] 6= e

Merge
pre:

∀k : 0 ≤ k < n⇒ A[k] ≤ A[k+1]
∀k : 0 ≤ k < m⇒ B[k] ≤ B[k+1]

post: ∀k : 0 ≤ k < t⇒ C[k] ≤ C[k+1]

Table 3.10: Given a functional specification (post), the maximally weak preconditions (pre) inferred
by our algorithms for functional correctness.

Benchmark GFP

Partial Array Init 0.50
Init Synthesis 0.72
Binary Search 13.48
Merge Sort (inner) 3.37

Table 3.11: Time taken for maximally weak preconditions for functional correctness.

First, we measured if the SMT queries generated by our system were efficiently decidable.
Figure 3.12(a) shows that almost all of our queries take less than 10ms. By separating fixed-point
computation from reasoning about local verification conditions, we have brought the theorem
proving burden down to the realm of current solvers.

Second, because our algorithms rely on the procedures OptimalSolutions and OptimalNegativeSolutions,
it is therefore important that in practice they return a small number of optimal solutions. In fact,
we found that on most calls they return a single optimal solution (Figure 3.12(b) and 3.12(c)) and
never more than 6. Therefore there are indeed a small number of possibilities to consider when
they are called (on line 7 of Figures 3.6 and 3.8 and Eq. 3.7). This explains the efficiency of our
local reasoning in computing the best abstract transformer.

Third, we examine the efficiency of the fixed-point computation (iterative) or encoding
(satisfiability-based) built from the core procedures. For the iterative approaches, we reached
a fixed-point in a median of 4 steps with the number of candidates remaining small, at around
8 (Figure 3.12(d)). This indicates that our algorithms perform a very directed search for the
fixed-point. For the satisfiability-based approach, the number of clauses in the SAT formula never
exceeds 500 (Figure 3.12(e)) with a median size of 5 variables. This explains the efficiency of our
fixed-point computation.

Robustness: Our algorithms use a global set of user specified predicates. We evaluated the ro-
bustness of our algorithms over the sortedness analysis by adding irrelevant predicates. Figure 3.13
shows how the performance degrades, as a factor of the base performance and averaged over all
sorting examples, as irrelevant predicates are introduced. The satisfiability-based approach is much
more robust than the iterative schemes and, remarkably, only shows degradation past 35 irrele-
vant predicates. On the other hand, greatest fixed-point cannot handle more than 15 irrelevant
predicates and least fixed-point shows steady decrease in performance with increasing number of
irrelevant predicates.

72

0

5

10

15

20

Base 10 15 20 25 30 35 40 45

LFP

CFP

Figure 3.13: Robustness of invariant inference algorithms as we increase the number of redundant
predicates. The x-axis denotes the extra predicates over the base set of predicates that prove the
assertions, and the y-axis denotes the factor slowdown.

3.8.5 Discussion

Our benchmark programs pose a spectrum of analysis challenges. The experiments corrob-
orate the intuition that a universal panacea capable of addressing all these challenges probably
does not exist. No single technique (forward or backward iterative, or bi-directional satisfiability-
based) addresses all the challenges, but between them they cover the space of reasoning required.
Therefore in practice, a combination will probably be required for handling real world instances.

We have also identified the different strengths that each algorithm demonstrates in prac-
tice. We found that for maximally weak precondition inference, the iterative greatest fixed-point
approach is more efficient than the satisfiability-based approach. In a similar setting of computing
maximally strong postcondition, the iterative least fixed-point is expected to be more efficient, as
is indicated by its performance in our experiments. A satisfiability-based encoding is not suit-
able in an unconstrained problem where the number of possibilities grows uncontrollably. On the
other hand, when the system is sufficiently constrained, for example when verifying sortedness or
preservation, the satisfiability-based approach is significantly more robust to irrelevant predicates,
followed by least fixed-point and lastly greatest fixed-point.

3.9 Summary

In this chapter, we have addressed the problem of inferring expressive program invariants
over predicate abstraction for verification and also for inferring maximally weak preconditions. We
presented the first technique that infers ∀ and ∀∃ quantified invariants for proving the full functional
correctness of all major sorting algorithms. Additionally, we presented the first technique that
infers maximally weak preconditions for worst-case upper bounds and for functional correctness.

We presented three fixed-point computing algorithms (two iterative and one satisfiability-
based) that use a common basic interface to SMT solvers to construct invariants that are instan-
tiations of templates with arbitrary quantification and boolean structure. Our algorithms can
compute greatest and least fixed-point solutions that induce maximally weak precondition and
maximally strong postcondition analyses.

We have implemented our algorithms in a tool that uses off-the-shelf SMT solvers. Our
tool uniformly and efficiently verifies sortedness and preservation properties of all major sorting
algorithms, and we have also used it for establishing worst-case bounds and maximally weak
preconditions for functional correctness. We are unaware of any other technique that is able to
perform these analyses.

73

3.10 Further Reading

Predicate abstraction For programming language researchers, predicate abstraction was pop-
ularized by the model checking community, and in particular the BLAST [29, 149, 148] and
SLAM [15, 14] model checkers. The success of these tools in automatically abstracting program
states over a set of predicates (that could be arbitrarily complicated) allowed them to analyze com-
plicated production C code [11, 13]. Subsequently, improvements such as symbolic predicate ab-
straction greatly improved the state-of-art in predicate abstraction-based model checking [178, 174].

Abstraction refinement An issue that we omit in this chapter is the construction of the abstraction,
i.e., inferring the set of predicates to abstract over. A standard approach in the model checking
community is to start with trivial approximations (e.g., with the single predicate true) and then
iteratively refine it as verification fails. Each failed verification attempt yields a counterexample
corresponding to which a refinement is constructed [10, 148, 134, 60]. It would be instructive to
consider the application of these techniques to satisfiability-based invariant inference.

Use of templates for invariant inference The use of templates for restricting the space of in-
variants is not entirely new—although defining them as explicitly as we do here is. With the
undecidability of program verification, such assumptions are to be expected. In fact, domains in
abstract interpretation [73] are templates of sorts, just not as structured as we use in this disserta-
tion. Abstraction refinement techniques have also used template to instantiate proof terms [148].
Lately, refinement templates have been used for inferring limited forms of dependent types [230].

Quantified invariants Quantification in invariants is critical for verifying important properties of
programs. In fact, sorting programs are the staple benchmarks for the verification community
precisely because they require complicated quantified invariants. Quantification imposes theoret-
ical limitations in general, therefore we are limited to making our tools as robust as possible in
practice. Previous approaches attempted to handle quantification at the analysis level, resulting in
complicated decision procedures [138], or the full literal specification of quantified predicates [82],
or use implicit quantification through free variables for limited properties [175, 177, 176, 113]. Our
approaches area more robust for two reasons. First, we delegate the concern of reasoning about
quantification to SMT solvers, which have been well engineered to handle quantified queries that
arise in practice [86]. Thus as the handling of quantification gets more robust in these solvers,
our tools will benefit. Even with the current technology, we found the handling of quantification
robust for even the most difficult verification examples. Second, the queries generated by our sys-
tem, through OptimalNegativeSolutions, which instantiates the templates with single predicates
and uses OptimalSolutions to aggregate the information, are at the low end of the difficulty that
current solvers can handle.

Axiomatization of reachability, transitive closure, types and further We model linked data struc-
tures using a simple axiomization of reachability. The reachability predicate ;(u, v), or the more
readable infix u; v, relates heap locations u and v if v is reachable from u by following appropri-
ate pointers [209] (or a ternary reachability predicate with a “between” element [173]). A typical
axiom for reachability—parameterized by a function f that follows the appropriate pointer, e.g.,
the next field—is:

∀ : u;f v ⇐⇒ u = v ∨ (f(u) 6= ⊥ ∧ f(u) ;f v)

A key technical detail is that first-order logic provers cannot handle transitivity required by reacha-
bility, because adding transitive closure to even simple decidable fragments of first order logic makes
them undecidable [128, 152]. Therefore, suitable incomplete axiomatizations limit the scope of the
predicates while being complete enough for most real programs [186, 152, 179, 54, 202].

Predicates have even been used to encode low-level types, e.g., using a HasType predi-
cate [65], with appropriate axioms. This approach of defining an operator (e.g., sel, upd, ;,
HasType) and axioms stating its semantics generalizes beyond specific programming constructs

74

and can be used for user-defined operators. For instance, in Chapter 4, we show how such an
approach can define the semantics of examples such as Fibonacci and shortest path to verify or
synthesize them. For Fibonacci, we define an operator Fib and its semantics using axioms:

Fib(0) = 0 ∧ Fib(1) = 1 ∧ ∀k : Fib(k) = Fib(k − 1) + Fib(k − 2)

We also imagine using such axiomatization for bottom-up modular reasoning and synthesis.

SMT Technology We briefly mention the basics of efficient backtracking algorithms for finding
solutions to SAT and algorithms for combining these with decision procedures for solving SMT
problems. The core backtracking algorithm, which is the basis of all modern SAT solvers, is the
Davis-Putnam-Logemann-Loveland (DPLL) [85, 84] procedure. A basic backtracking process picks
a literal and recursively checks if the two subproblems induced by assigning the literal true or false
are satisfiable. The solver outputs an assignment if the choices lead to the formula being satisfiable.
Otherwise, it backtracks until all assignments have been explored and found unsatisfiable. DPLL
adds two enhancements: (1) unit propagation, which checks for clauses with single literals and
assigns the only satisfying choice to the literal, and (2) pure literal elimination, which checks
for variables that occur only with one polarity (either negated or not) in the entire formula and
assigns them such that their clauses are satisfied. Incredible engineering advances that work well
in practice have been made to the original algorithm, such as two-watched literals, backjumping
(non-clausal backtracking), conflict-driven lemma learning, and restarts. The reader is referred to
literature [212, 170, 124] on this topic for detailed discussions.

SMT solvers extend the basic SAT solving engine by efficiently combining them with solvers
SolverT for satellite theories T, using an efficient DPLL(T) procedure [212, 118]. DPLL(T) is
more efficient than both the eager and lazy approaches to augmenting DPLL with theories. In
the eager approach an equi-satisfiable SAT formula is constructed from the SMT formula, using a
theory-specific translation to SAT, e.g., for equality with uninterpreted function (EUF) [49]. The
eager approach requires such a translation for each theory, which may not exist. An alternative
lazy approach assigns a propositional variable to all atoms in the SMT formula and generates a
satisfying model for the resulting SAT. The model is then checked by the theory solvers and new
clauses are added if the theory solvers find the boolean assignments to the atoms inconsistent. For
instance, if the DPLL procedure generates a model with x < y as true and x < y + 10 as false,
the linear arithmetic solver will find this model inconsistent. The lazy approach suffers from the
inability of the theory solvers to direct the search—they only participate as validators.

The key to DPLL(T) is the way it overcomes the drawbacks of both the eager and the lazy
approaches. Like the lazy approach, SolverT validates the choices made by the DPLL core, but
additionally, it propagates literals of the SAT formula that are consequences in the theory T back
to the SAT solver, thus guiding the search like the eager approach.

75

Chapter 4

Proof-theoretic Synthesis:
Verification-inspired Program
Synthesis

“Get the habit of analysis—analysis
will in time enable synthesis to become
your habit of mind.”

— Frank Lloyd Wright1

This chapter describes a novel technique for the synthesis of imperative programs. Auto-
mated program synthesis has the potential to make the programming and design of systems easier
by allowing the programs to be specified at a higher-level than executable code. In our approach,
which we call proof-theoretic synthesis, the user provides an input-output functional specification,
a description of the atomic operations in the programming language, and resource constraints.
Our technique synthesizes a program, if there exists one, that meets the input-output specification
and uses only the given resources.

The insight behind our approach is to interpret program synthesis as generalized program
verification, which allows us to bring verification tools and techniques, such as those described in
Chapters 2 and 3 to program synthesis. Our synthesis algorithm works by creating a program with
unknown statements, unknown guards, unknown inductive invariants (proof certificate for safety),
and unknown ranking functions (proof certificate for termination). It then generates constraints
that relate the unknowns, which we show can be solved using existing verifiers.

We demonstrate the feasibility of the proposed approach by synthesizing programs in three
different domains: arithmetic, sorting, and dynamic programming. Using verification tools from
previous chapters, we are able to synthesize programs for complicated arithmetic algorithms in-
cluding Strassen’s matrix multiplication and Bresenham’s line drawing; several sorting algorithms;
and several dynamic programming algorithms. For these programs, the median time for synthesis
is 14 seconds, and the ratio of synthesis to verification time ranges between 1× to 92× (with an
median of 7×).

4.1 Program Synthesis as Generalized Verification

Automated program synthesis, despite holding the promise for significantly easing the task
of programming, has received little attention due to its difficulty. Being able to mechanically
construct programs has wide-ranging implications. Mechanical synthesis yields programs that are
correct-by-construction. It relieves the tedium and error associated with programming low-level
details, can aid in automated debugging, and in general leaves the human programmer free to deal

1American Architect and Writer, the most abundantly creative genius of American architecture. His Prairie style
became the basis of 20th century residential design in the United States, 1867-1959.

76

with the high-level design of the system. Additionally, synthesis could discover new non-trivial
programs that are difficult for programmers to build.

In this chapter, we present an approach to program synthesis that takes the correct-by-
construction philosophy of program design [93, 131, 270] and shows how it can be automated. In
the previous chapters, we described verification tools that can infer inductive invariants for partial
correctness and ranking functions for termination. They do this by solving a system of implications
(verification condition), with unknown invariants. In this chapter we show that it is possible to
treat synthesis as a verification problem by encoding program guards and statements as additional
logical facts that we trick the verifier into discovering—enabling use of existing verification tools for
synthesis. The verification tool infers the invariants and ranking functions as usual, but in addition
infers the program statements, yielding automated program synthesis. We call our approach proof-
theoretic synthesis because the proof is synthesized alongside the program.

We use a novel definition of the synthesis task as requirements on the output program:
functional requirements, requirements on the form of program expressions and guards, and re-
quirements on the resources used (Section 4.2). The key to our synthesis algorithm is to treat
synthesis as generalized verification by defining a reduction from the synthesis task to three sets of
constraints. The first set are safety conditions that ensure the partial correctness of the loops in the
program. The second set are well-formedness conditions on the program guards and statements,
such that the output from the verification tool (facts corresponding to program guards and state-
ments) correspond to valid guards and statements in an imperative language. The third set are
progress conditions that ensure that the program terminates. We call these synthesis conditions
and solve them using off-the-shelf verifiers (Section 4.3), such as the ones built in the previous
chapters. We also present requirements that program verification tools must meet in order to be
used for synthesis of program statements and guards (Section 4.4).

We build synthesizers using verifiers VS3
LIA and VS3

PA from previous chapters, and present syn-
thesis results for the three domains of arithmetic, sorting and dynamic programming (Section 4.5).
This approach not only synthesizes the program, but additionally the proof of correctness and
termination alongside. To our knowledge, our approach is the first that automatically synthesizes
programs and their proofs, while previous approaches have either used given proofs to extract
programs [196] or not attempted to provide correctness guarantees at all [246].

4.1.1 Motivating Example: Bresenham’s Line Drawing

To illustrate our approach, we next show how to synthesize Bresenham’s line drawing algo-
rithm. This example is ideal for automated synthesis because, while the program’s requirements
are simple to specify, the actual program is quite involved.

Bresenham’s line drawing algorithm is shown in Figure 4.1(a). The algorithm computes
(and writes to the output array out) the discrete best-fit line from (0, 0) to (X,Y), where the
point (X,Y) is in the NE half-quadrant, i.e., 0 < Y ≤ X. The best-fit line is one that does not
deviate more than half a pixel away from the real line, i.e., |y − (Y/X)x| ≤ 1/2. For efficiency, the
algorithm computes the pixel values (x, y) of this best-fit line using only linear operations, but the
computation is non-trivial and the correctness of the algorithm is also not evident.

An important idea underlying our approach is that we can write program statements as
equality predicates, as we discussed in Chapter 3, and acyclic fragments as transition systems.
We define transition systems formally in Section 4.3.1, and they essentially correspond to a set of
guarded commands [89]. For example, we can write x := e as x′ = e, where x′ is the output value
of x. We will write statements as equalities between the output, primed, versions of the variables
and the expression (over the unprimed versions of the variables). Also, guards that direct control
flow in an imperative program can now be seen as guards for statement facts in a transition system.
Figure 4.1(c) shows our example written in transition system form. To prove partial correctness,
one can write down the inductive invariant for the loop and check that the verification condition
for the program is in fact valid. The verification condition consists of four implications for the four
paths corresponding to the entry, exit, and one each for the branches in the loop. Using standard

77

(a)
Bresenhams(int X,Y) {
v1:=2Y −X;y:=0;x:=0;
while (x ≤ X)

out[x]:=y;
if (v1 < 0)
v1:=v1+2Y ;

else

v1:=v1+2(Y -X);y++;
x++;

return out;
}

(b)
Precondition:
0 < Y ≤ X

Postcondition:
∀k : 0 ≤ k ≤ X ⇒ |2.out[k]−2.(Y/X)k|≤1

Invariant τ :
0 < Y ≤ X
v1 = 2(x+1)Y −(2y+1)X
2(Y −X) ≤ v1 ≤ 2Y
∀k : 0 ≤ k < x⇒ |2.out[k]−2.(Y/X)k|≤1

Ranking function ϕ:
X − x

(c)

Bresenhams(int X,Y) {
true→ v′1 = 2Y −X ∧ y′ = 0∧x′ = 0

while (x ≤ X)

v1 < 0→out′=upd(out, x, y) ∧ v′1 = v1 + 2Y ∧ x′ = x+ 1

v1 ≥ 0→out′=upd(out, x, y) ∧ v′1 = v1 + 2(Y−X) ∧ y′ = y + 1 ∧ x′ = x+ 1

return out;

}

Figure 4.1: Motivating proof-theoretic synthesis. (a) Bresenham’s line drawing algorithm (b) The
invariant and ranking function that prove partial correctness and termination, respectively. (c)
The algorithm written in transition system form, with statements as equality predicates, guarded
appropriately (array writes are modeled using standard upd predicates).

78

verification condition generation, and writing the renamed version of invariant τ as τ ′, these are

(0 < Y ≤ X) ∧ sentry ⇒ τ ′

τ ∧ ¬gloop ⇒ ∀k : 0≤k≤X ⇒
|2.out[k]−2.(Y/X)k|≤1

τ ∧ gloop ∧ gbody1 ∧ sbody1 ⇒ τ ′

τ ∧ gloop ∧ gbody2 ∧ sbody2 ⇒ τ ′

(4.1)

where we use symbols for the various parts of the program:

gbody1 : v1 < 0
gbody2 : v1 ≥ 0
gloop : x ≤ X
sentry : v′1 = 2Y −X ∧ y′=0 ∧ x′=0
sbody1 : out′ = upd(out, x, y) ∧ v′1 =v1+2Y ∧ x′=x+1
sbody2 : out′ = upd(out, x, y) ∧ v′1 =v1+2(Y −X) ∧ y′=y+1 ∧ x′=x+1

(4.2)

As before we reason about arrays using McCarthy’s select/update predicates [199], i.e., out′ =
upd(out, x, y) corresponds to the assignment out[x] := y.

With a little bit of work, one can validate that the invariant τ shown in Figure 4.1(b) satisfies
Eq. (4.1). Checking the validity of given invariants can be automated using SMT solvers [87]. In
fact, powerful program verification tools such as VS3

LIA and VS3
PA can generate fixed-point solutions—

inductive invariants such as τ—automatically. Aside from the satisfiability-based techniques we
described in the previous chapters, other approaches such as constraint-based invariant genera-
tion [63], abstract interpretation [73], or model checking [59] can also be used for invariant infer-
ence.

The insight behind the technique in this chapter is to ask the question, if we can infer τ
in Eq. (4.1), then is it possible to infer the guards gi’s or the statements si’s at the same time?
We have the found the answer to be yes, we can infer guards and statements as well, by suitably
encoding programs as transition systems, asserting appropriate constraints, and then leveraging
program verification techniques to do a systematic (lattice) search for unknowns in the constraints.
Here the unknowns now represent both the invariants and the statements and guards. It turns out
that a direct solution to the unknown guards and statements may be uninteresting, i.e., it may
not correspond to real programs, so we need well-formedness constraints. Additionally, even if we
synthesize valid programs, it may be that the programs are non-terminating, so we need progress
constraints as well.

Suppose that the statements sentry, sbody1, and sbody2, are unknown. A trivial satisfying
solution to Eq. (4.1) may set all these unknowns to false. If we use a typical program verification
tool that computes least fixed-points starting from ⊥, then indeed, it will output this solution.
On the other hand, let us make the conditional guards gbody1 and gbody2 unknown. Again, gbody1 =
gbody2 = false is a satisfying solution. We get uninteresting solutions because the unknowns are not
constrained enough to ensure valid statements and control-flow. Statement blocks are modeled as∧
i x
′
i = ei with one equality for each output variable x′i and expressions ei are over input variables.

Therefore, false does not correspond to any valid block. Similarly gbody1 = gbody2 = false does
not correspond to any valid conditional with two branches. For example, consider if (g) S1 else S2

with two branches. Note how S1 and S2 are guarded by g and ¬g, respectively, and g ∨ ¬g holds.
For every valid conditional, the disjunction of the guards is always a tautology. In verification, the
program syntax and semantics ensure the well-formedness of acyclic fragments. In synthesis, we
will need to explicitly constrain well-formedness of acyclic fragments (Section 4.3.4).

Next, suppose that the loop guard gloop is unknown. In this case if we attempt to solve for the
unknowns τ and gloop, then one valid solution assigns τ = gloop = true, which corresponds to an
non-terminating loop. In verification, we were only concerned with partial correctness and assumed
that the program was terminating. In synthesis, we will need to explicitly encode progress by
inferring appropriate ranking functions to prevent the synthesizer from generating non-terminating
programs (Section 4.3.5).

79

Note that our aim is not to solve the completely general synthesis problem for a given
functional specification. Guards and statements are unknowns but they take values from given
domains, specified by the user as domain constraints, so that a lattice-theoretic search can be
performed by existing program verification tools. Also notice that we did not attempt to change
the number of invariants or the invariant position in the constraints. This means that we assume
a given looping or flowgraph structure, e.g., one loop for our example. Lastly, as opposed to
verification, the set of program variables is not known, and therefore we need a specification of the
stack space available and also a bound on the type of computations allowed.

We use the specifications to construct an expansion, which is a program with unknown
symbols and construct safety conditions over the unknowns. We then impose the additional well-
formedness and progress constraints. We call the new constraints synthesis conditions and hope
to find solutions to them using program verification tools such as VS3

LIA and VS3
PA. The constraints

generated are non-standard and therefore to solve them we need verification tools that satisfy
certain properties. Our verification tools from the previous chapters do possess those properties.
Indeed, satisfiability-based program verification tools can efficiently solve the synthesis conditions
to synthesize programs (with a very acceptable slowdown over verification).

The guards, statements and proof terms for the example in this section come from the
domain of arithmetic. Therefore, a verification tool for arithmetic such as VS3

LIA would be appro-
priate. For programs whose guards and statements are more easily expressed in other domains,
a corresponding verification tool for that domain, such as VS3

PA for predicate abstraction, should
be used. In fact, we have employed tools for the domains of arithmetic and predicate abstrac-
tion for proof-theoretic synthesis with great success. Our objective is to reuse existing verification
technology—that started with invariant validation and progressed to invariant inference—and push
it further to program inference.

4.2 The Synthesis Scaffold and Task

We now elaborate on the specifications that a proof-theoretic approach to synthesis requires
and how these also allow the user to specify the space of interesting programs.

The following triple, called a scaffold, describes the synthesis problem:

〈F,D,R〉

The components of this triple are:

1. Functional Specification The first component F of a scaffold describes the desired precondition
and postcondition of the synthesized program. Let ~vin and ~vout be the vectors containing the input
and output variables, respectively. Then a functional specification F = (Fpre(~vin), Fpost(~vin, ~vout))
is a tuple containing the formulae that hold at the entry and exit program locations. For example,
for the program in Figure 4.1, Fpre(X,Y)

.
= (0 < Y ≤ X and Fpost(X,Y, out)

.
= ∀k : 0 ≤ k ≤ X ⇒

2.(Y/X)k − 1 ≤ 2.out[k] ≤ 2.(Y/X)k + 1.

2. Domain Constraints The second component D = (Dexp, Dgrd) of the scaffold describes the
domains for expressions and guards in the synthesized program.

2a. Program Expressions: The expressions come from Dexp.

2b. Program Guards: The conditional and loop guards (boolean expressions) come from Dgrd.

For example, for the program in Figure 4.1, the domains Dexp and Dgrd are both linear arithmetic.

3. Resource Constraints The third component R of the scaffold describes the resources that the
synthesized program can use. The resource specification R = (Rflow, Rstack, Rcomp) is a triple of
resource templates that the user must specify for the flowgraph, stack and computation, respec-
tively:

80

3a. Flowgraph Template We restrict attention to structured (or goto-less) programs, i.e., pro-
grams whose flowgraphs are reducible [147]. The structured nature of such flowgraphs allows
us to describe them using simple strings. The user specifies Rflow as a string from the
following grammar:

T ::= ◦ | ∗(T) | T ;T

Here ◦ denotes an acyclic fragment of the flow graph, ∗(T) denotes a loop containing the
body T , and T ;T denotes the sequential composition of two flow graphs. For example, for
the program in Figure 4.1, Rflow = ◦;∗(◦).

3b. Stack Template The program is only allowed to manipulate a bounded number of variables,
specified by means of a map Rstack : type→ int indicating the number of extra temporary
variables of each type. For example, for the program in Figure 4.1, Rstack = (int, 1).

3c. Computation Template At times it may be important to put an upper bound on the number
of times an operation is performed inside a procedure. A map Rcomp : op→ int of operations
op to the upper bound specifies this constraint. For example, for the program in Figure 4.1,
Rcomp = ∅, which indicates that there are no constraints on computation.

While the resource templates make synthesis tractable by enabling a systematic lattice-
theoretic search, they additionally allow the user to specify the space of interesting programs. While
human programmers have a tendency to develop the simplest solutions, mechanical synthesizers
do not. The resource templates formally enforce a suitability metric on the space of programs
by allowing the user to restrict attention to desirable programs. For instance, the user may wish
to reduce memory consumption at the expense of a more complex flowgraph and still meet the
functional specification. If the user does not care, then the resource templates can be considered
optional and left unspecified. In this case, the synthesizer can iteratively enumerate possibilities
for each resource and attempt synthesis with increasing resources.

4.2.1 Picking a proof domain and a solver for the domain

Our synthesis approach is proof-theoretic, meaning we synthesize the proof terms, i.e.,
invariants and ranking functions, alongside the program. These proof terms will take values from
a suitably chosen proof domain Dprf. Note that Dprf must be at least as expressive as Dgrd and
Dexp. The user chooses an appropriate proof domain and also picks a solver capable of handling
that domain. We will use program verification tools, VS3

LIA and VS3
PA, as solvers and typically, the

user will pick the most powerful verification tool available for the chosen proof domain.

4.2.2 Synthesis Task

Given a scaffold 〈F,D,R〉, we call an executable program valid with respect to the scaffold
if it meets the following conditions.

• When called with inputs ~vin that satisfy Fpre(~vin) the program terminates, and the resulting
outputs ~vout satisfy Fpost(~vin, ~vout). There are associated invariants and ranking functions
that provide a proof of this fact.

• There is a program loop (with an associated loop guard g) corresponding to each loop anno-
tation (specified by “∗”) in the flowgraph template Rflow. The program contains statements
from the following imperative language IML for each acyclic fragment (specified by “◦”).

S ::= skip | S;S | x := e | if g then S else S

Where x denotes a variable and e denotes some expression. (Memory reads and writes are
modeled using memory variables and select/update expressions.) The domain of expressions
and guards is as specified by the scaffold, i.e., e ∈ Dexp and g ∈ Dgrd.

81

• The program uses only as many local variables as specified by Rstack in addition to the input
and output variables ~vin, ~vout.

• Each elementary operation only appears as many times as specified in Rcomp.

Example 4.1 (Square Root) Let us consider a scaffold with functional specification F = (x ≥
1, (i − 1)2 ≤ x < i2), which states that the program computes the integral square root of the input
x , i.e., i − 1 = b

√
xc. Also, let the domain constraints Dexp, Dgrd be limited to linear arithmetic

expressions, which means that the program cannot use any native square root or squaring opera-
tions. Lastly, let Rflow, Rstack and Rcomp be ◦;∗(◦);◦, {(int, 1)} and ∅, respectively. A program
that is valid with respect to this scaffold is the following:

IntSqrt(int x) {
v:=1;i:=1;
whileτ,ϕ(v ≤ x)
v:=v+2i+1;i++;

return i−1;
}

Invariant τ :
v=i2∧x≥(i−1)2∧i ≥ 1

Ranking function ϕ:
x− (i−1)2

where v, i are the additional stack variable and loop iteration counter (and reused in the output),
respectively. Also, the loop is annotated with the invariant τ and ranking function ϕ as shown,
which prove partial correctness and termination, respectively.

We emphasize the notion of validity with respect to scaffolds of the synthesized programs:

Definition 4.1 (Validity with respect to a scaffold) A terminating program P is valid with
respect to a scaffold 〈F,D,R〉, if it satisfies the Hoare triple {Fpre}P{Fpost}, its acyclic fragments
are in the language IML, has expressions and guards from the domains in D, and uses only the
resources as specified by R.

In the next two sections, we formally describe the steps of our synthesis algorithm. We first
generate synthesis conditions (Section 4.3), which are constraints over unknowns for statements,
guards, loop invariants and ranking functions. We then observe that they resemble verification
conditions, and we can employ verification tools, if they have certain properties, to solve them
(Section 4.4).

4.3 Synthesis Conditions

In this section, we define and construct synthesis conditions for an input scaffold 〈F,D,R〉.
Using the resource specification R, we first generate a program with unknowns corresponding to the
fragments we wish to synthesize. Synthesis conditions then specify constraints on these unknowns
and ensure partial correctness, loop termination, and well-formedness of control-flow. We begin
our discussion by motivating the representation we use for acyclic fragments in the synthesized
program.

4.3.1 Using Transition Systems to Represent Acyclic Code

Suppose we want to infer a set of (straight-line) statements that transform a precondition
φpre to a postcondition φpost, where the relevant program variables are x and y. One approach
might be to generate statements that assigns unknown expressions ex and ey to x and y, respec-
tively:

{φpre}x := ex; y := ey{φpost}

Then we can use Hoare’s axiom for assignment to generate the verification condition φpre ⇒
(φpost[y 7→ ey])[x 7→ ex]. However, this verification condition is hard to automatically reason
about because it contains substitution into unknowns. Even worse, we have restricted the search

82

space by requiring the assignment to y to follow the assignment to x, and by specifying exactly
two assignments.

Instead we will represent the computation as a transition system, which provides a much
cleaner mechanism for reasoning when program statements are unknown. A transition in a transi-
tion system is a (possibly parallel) mapping of the input variables to the output variables. Variables
have an input version and an output version (indicated by primed names), which allows them to
change state. For our example, we can write a single transition:

{φpre} 〈x′, y′〉 = 〈ex, ey〉 {φ′post}

Here φ′post is the postcondition, written in terms of the output variables, and ex, ey are expressions
over the input variables. The verification condition corresponding to this tuple is φpre ∧ x′ =
ex ∧ y′ = ey ⇒ φ′post. Note that every state update (assignment) can always be written as a
transition.

We can extend this approach to arbitrary acyclic program fragments. A guarded transition
(written []g → s) contains a statement s that is executed only if the quantifier-free guard g holds.
A transition system consists of a set {[]gi → si}i of guarded transitions. It is easy to see that a
transition system can represent any arbitrary acyclic program fragment by suitably enumerating
the paths through the acyclic fragment. The verification condition for {φpre}{[]gi → si}i{φ′post} is
simply ∧

i

(φpre ∧ gi ∧ si ⇒ φ′post) (4.3)

In addition to the simplicity afforded by the lack of any ordering, the constraints from
transition systems are attractive for synthesis as the program statements si and guards gi are
formulae just like the pre- and postconditions φpre and φ′post. Given the lack of differentiation, any
(or all) can be unknowns in these synthesis conditions. This distinguishes them from verification
conditions, which can at most have unknown invariants. Verification conditions are written with
unknown invariants are used for invariant inference and with user-supplied invariants for invariant
validation.

Synthesis conditions can thus be viewed as generalizations of verification conditions. Pro-
gram verification tools routinely infer fixed-point solutions (invariants) that satisfy the verification
conditions with known statements and guards. With our formulation of statements and guards
as just additional facts in the constraints, it is possible to use sufficiently powerful verifiers such
as VS3

LIA and VS3
PA to infer invariants and program statements and guards. Synthesis conditions

serve an analogous purpose to synthesis as verification conditions do to verification. If a program
is correct (verifiable), then its verification condition is valid. Similarly, if a valid program exists
for a scaffold, then its synthesis condition has a satisfying solution.

4.3.2 Expanding a flowgraph

We synthesize code fragments for each acyclic fragment and loop annotation in the flowgraph
template as follows:

• Acyclic fragments For each acyclic fragment annotation “◦”, we infer a transition system
{gi → si}i, i.e., a set of assignments si, stated as conjunctions of equality predicates, guarded
by quantifier-free first-order-logic (FOL) guards gi such that the disjunction of the guards is a
tautology. Suitably constructed equality predicates and quantifier-free FOL guards are later
translated to executable code—assignment statements and conditional guards, respectively—
in the language IML.

• Loops For each loop annotation “∗” we infer three elements. The first is the inductive loop
invariant τ , which establishes partial correctness of each loop iteration. The second is the
ranking function ϕ, which proves the termination of the loop. Both the invariant and ranking
function take values from the proof domain, i.e., τ, ϕ ∈ Dprf. Third, we infer a quantifier-free
FOL loop guard g.

83

Formally, the output of expanding flowgraphs will be a program in the transition system
language TSL (note the correspondence to the flowgraph grammar):

p ::= choose {[]gi → si}i | whileτ,ϕ(g) do {p} | p;p

Here each si is a conjunction of equality predicates, i.e.,
∧
j (xj = ej). We will use ~p to denote

a sequence of program statements in TSL. Note that we model memory read and updates using
select/update predicates. Therefore, in x = e the variable x could be a memory variable and e
could be a memory select or update expression.

Given a string for a flowgraph template, we define an expansion function Expand : int ×
Dprf ×R ×D ×Rflow → TSL that introduces fresh unknowns for missing guards, statements

and invariants that are to be synthesized. Expand
n,Dprf

D,R (Rflow) expands a flowgraph Rflow and is
parametrized by an integer n that indicates the number of transition each acyclic fragment will be
expanded to, the proof domain, and the resource and domain constraints. The expansion outputs
a program in the language TSL.

Expand
n,Dprf

D,R (◦) = choose {[]gi→si}i=1..n gi, si fresh unknowns

Expand
n,Dprf

D,R (∗(T)) = whileτ,ϕ (g) { τ, ϕ, g fresh unknowns

Expand
n,Dprf

D,R (T);

}
Expand

n,Dprf

D,R (T1;T2) = Expand
n,Dprf

D,R (T1);Expand
n,Dprf

D,R (T2)

Each unknown g, s, τ generated during the expansion has the following domain inclusion con-
straints.

τ ∈ Dprf|V
g ∈ Dgrd|V
s ∈

∧
i xi = ei where xi ∈ V, ei ∈ Dexp|V

Here V = ~vin ∪ ~vout ∪ T ∪ L is the set of variables: the input ~vin and output ~vout variables, the
set of temporaries (local variables) T as specified by Rstack, and the set of iteration counters and
ranking function tracker variables is L (which we elaborate on later), one for each loop in the
expansion. The restriction of the domains by the variable set V indicates that we are interested
in the fragment of the domain over the variables in V . Also, the set of operations in ei is bounded
by Rcomp.

The expansion has some similarities to the notion of a user-specified sketch in previous
approaches [248, 246]. However, the unknowns in the expansion here are more expressive than
the integer unknowns considered in these prior approaches, and this allows us to perform a lattice
search as opposed to the combinatorial approaches proposed earlier.

Example 4.2 Let us revisit the integral square root computation from Example 4.1. Expanding
the flowgraph template ◦;∗(◦);◦ with n = 1 yields expsqrt:

choose {[]g1 → s1} ;
whileτ,ϕ (g0) {

choose {[]g2 → s2} ;
};
choose {[]g3 → s3}

τ ∈ Dprf|V
g1, g2, g3 ∈ Dgrd|V
s1, s2, s3 ∈

∧
i xi = ei

xi ∈ V, ei ∈ Dexp|V

where V = {x, i, r, v}. The variables i and r are the loop iteration counter and ranking function
tracker variable, respectively, and v is the additional local variable. Also, the chosen domains for
proofs Dprf, guards Dgrd, and expressions Dexp are FOL facts over quadratic expressions, FOL
facts over linear arithmetic, and linear arithmetic, respectively.

Notice that the expansion encodes everything specified by the domain and resource constraints
and the chosen proof domain. The only remaining specification is F, which we will use in the next
section to construct safety conditions over the expanded scaffold.

84

Definition 4.2 An acyclic fragment is in normal form if all conditional branches occur before any
assignment statement.

Lemma 4.1 Every acyclic fragment can be converted to an equivalent one that is in normal form.

Proof: We prove the result by successive transformations to equivalent acyclic fragments.
Consider a fragment in which an assignment x := e appears before a conditional branch guarded
by an expression g. Because the assignment appears before, the fragment is not in normal form.
We write the fragment into one in which that assignment and conditional branch pair occur
with the branch first. Then we repeat until no such pairs exist, in which case the fragment will
be in normal form.

We now describe the equivalence preserving transformation. Consider first the simple case in
which the guard expression g does not refer to variable assigned to, i.e., x. In this case, the
branch is unaffected if the assignment occurs before or after (assuming no side-effects other
than state update through the assignment), so we copy the assignment statement to right after
on both the true and false sides of the branch and delete original.

If the variable x does appear in the guard expression g, then we substitute the expression e
computed by the assignment for x in g. That is the branch now occurs on g[x 7→ e]. Additionally,
we copy the assignment statement to both the true and false branches, and delete the original.
(Notice that the substitution approach is valid because of the Hoare rule for assignment.)

Lastly, if two conditional fragments appear in succession, then it is easy to see that the second
one can be replicated inside each branch of the preceeding.

Repetitive applications of this transformation yields a normal form acyclic fragment.

�

For normal form acyclic fragments, the following lemma is trivial:

Lemma 4.2 For an acyclic fragment in normal form, the disjunctions of conditional states im-
mediately before all statements is a tautology.

We now define a notion of integer bounded branching in a structured program. Notice that
for acyclic fragments in structured programs, i.e., those from if-then-else statements, the control
flow graph is directed and planar, and so we can define the following:

Definition 4.3 (n-branching) An acyclic fragment in a structured program, when written in
normal form, is n-branching if the (directed planar) control flow graph of the acyclic fragment has
a max-cut of size at most n.

With the above definition restricting the class of programs we can handle, the following
lemma about the correctness of Expand is trivial and stated without proof.

Lemma 4.3 Let exp = Expand
n,Dprf

D,R (Rflow) and let P be any n-branching program whose control
flow structure matches the flowgraph template Rflow (constraint 3a in Section 4.2) and whose
guards, expressions, and invariants come from the domains Dgrd, Dexp, and Dprf, respectively.
Then, there exists a mapping M of unknowns in exp, guard g’s and statement s’s, to known
guards and statements such that P is a concretization of exp[M].

The notion of concretizing programs used above will be made formal later (Definition 4.4
and Definition 4.5). Intuitively, it consists of translating choose constructs in the program to
executable if-then-else structures.

4.3.3 Encoding Partial Correctness: Safety Conditions

Now that we have the expanded scaffold we need to collect the constraints (safety conditions)
for partial correctness implied by the simple paths in the expansion. Simple paths (straight-line

85

sequence of statements) start at a loop header Fpre and end at a loop header or program exit. The
loop headers, program entry, and program exit are annotated with invariants, precondition Fpre,
and postcondition Fpost, respectively.

Let φ denote formulae that represent pre- and postconditions and constraints. Then we
define PathC : φ× TSL× φ→ φ as a function that takes a precondition, a sequence of statements,
and a postcondition and outputs safety constraints that encode the validity of the Hoare triple.
Let us first describe the simple cases of constraints from a single acyclic fragment and loop:

PathC(φpre, (choose {[]gi → si}i), φpost) =∧
i(φpre ∧ gi ∧ si ⇒ φpost

′)
(4.4)

PathC(φpre, (while
τ,ϕ (g) {~pl}), φpost) =

φpre ⇒ τ ′ ∧ PathC(τ ∧ g, ~pl, τ) ∧ (τ ∧ ¬g ⇒ φpost
′)

(4.5)

Here φpost
′ and τ ′ are the postcondition φpost and invariant τ but with all variables renamed to

their output (primed) versions. Since the constraints need to refer to output postconditions and
invariants the rule for a sequence of statements is a bit complicated. For simplicity of presentation,
we assume that acyclic annotations do not appear in succession. This assumption holds without
loss of generality because it is always possible to collapse consecutive acyclic fragments, e.g.,
two consecutive acyclic fragments with n transitions each can be collapsed into a single acyclic
fragment with n2 transitions. For efficiency, it is prudent not to make this assumption in practice,
but the construction here generalizes easily. For a sequence of statements in TSL, under the above
assumptions, there are three cases to consider. First, a loop followed by statements ~p, whose
reduction is as follows:

PathC(φpre, (while
τ,ϕ (g) {~pl};~p), φpost) =

(φpre ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ PathC(τ ∧ ¬g, ~p, φpost)
(4.6)

Second, an acyclic fragment followed by just a loop, whose reduction is as follows:

PathC(φpre, (choose {[]gi → si}i ;whileτ,ϕ (g) {~pl}), φpost) =∧
i(φpre ∧ gi ∧ si ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ (τ ∧ ¬g ⇒ φpost

′)
(4.7)

Third, an acyclic fragment, followed by a loop, followed by statements ~p, whose reduction is as
follows:

PathC(φpre, (choose {[]gi → si}i ;whileτ,ϕ (g) {~pl};~p), φpost) =∧
i(φpre ∧ gi ∧ si ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ PathC(τ ∧ ¬g, ~p, φpost)

(4.8)

The safety condition for a scaffold with functional specification F = (Fpre, Fpost), flowgraph

template Rflow and expansion exp = Expand
D,R
n,Dprf

(Rflow) is then given by:

SafetyCond(exp,F) = PathC(Fpre, exp, Fpost) (4.9)

Example 4.3 Consider the expanded scaffold (from Example 4.2) and the functional specification
F (from Example 4.1) for integral square root. The loop divides the program into three simple
paths, which results in SafetyCond(expsqrt,F):

x ≥ 1 ∧ g1 ∧ s1 ⇒ τ ′ ∧
τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ ′ ∧

τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒ (i′ − 1)2 ≤ x′ ∧ x′ < i′2

Notice that gi, si, τ are all unknown placeholder symbols.

4.3.4 Encoding Valid Control: Well-formedness Conditions

We next construct constraints to ensure the well-formedness of choose statements. In the
preceding development, we treated each path through the choose statement as independent. In
any executable program control will always flow through at least one branch/transition of the state-
ment, and each transition will contain well-formed assignment statements. We first describe a con-
straint that encodes this directly and then discuss an alternative way of ensuring well-formedness
of transition guards.

86

Non-iterative upper bounded search We can parameterize the expansion of a scaffold by an in-
teger n greater than the number of transitions expected in any acyclic fragment. The expanded
scaffold can then represent any program that requires at most n-way branching in any acyclic
fragment. Any excess transitions will have their guards instantiated to false. For any statement
choose {[]gi → si} in the expansion, we impose the well-formedness constraint:

WellFormTS({[]gi → si}i)
.
=(
∧
i valid(si)) Valid transition

∧ (
∨
i gi) Covers space

(4.10)

Here the predicate valid(si) ensures one and only one equality assignment to each variable in si.
This condition ensures that each si corresponds to a well-formed transition that can be translated
to executable statements. The second term constrains the combination of the guards to be a
tautology. Note that this is important to ensure that each transition system is well-formed and can
be converted to a valid executable conditional. For example, consider the executable conditional
if (G) then x := E1 else x := E2. The corresponding transition system is {[]g1 → (x′ =
E1), []g2 → (x′ = E2)}, where g1 = G and g2 = ¬G and g1 ∨ g2 holds. In every well-formed
executable conditional the disjunction of the guards will be a tautology. This is that constraint
imposed by the second term.

Notice that this construction does not constrain the guards to be disjoint. This is not
required, as without loss of generality, the branches can be arbitrarily ordered (hence mutually
exclusive) in the output to get a valid imperative program.

Iterative lower bounded search Notice that Eq. (4.10) is non-standard, i.e., it is not an implication
constraint like typical verification conditions; and we will elaborate on this in Section 4.4. Program
verification tools may or may not be able to handle such non-standard constraints. For example,
the iterative approach from Chapter 3 cannot handle such non-standard constraints, while the
satisfiability-based approaches from Chapters 2 and 3 can. Therefore, to enable use of a wider
class verifiers, we discuss a technique for ensuring well-formedness of transitions without asserting
Eq. (4.10).

We first assume that valid(si) holds, and we will show in Section 4.4.3 the conditions un-
der which it does. Then all we need to ensure well-formedness is that ∨igi is a tautology. Since
the transitions of a choose statement represent independent execution paths, we can perform an
iterative search for the guards gi. We start by finding any satisfying guard (and corresponding
transition)—which can even be false. We then iteratively ask for another guard (and transition)
such that the space defined by the new guard is not entirely contained in the space defined by
the disjunction of the guards already generated. If we ensure that at each step the newly discov-
ered guard covers some more space that was not covered by earlier guards, then eventually the
disjunction of all will be a tautology.

More formally, suppose n such calls result in the transition system {[]gi → si}i=1..n, and
∨i=1..ngi is not already a tautology. Then for the n + 1st transition, we assert the constraint
¬(gn+1 ⇒ (∨i=1..ngi)). This constraint ensures that gn+1 will cover some space not covered by
∨i=1..ngi. We repeat until ∨igi holds. This iterative search for the transitions also eliminates the
need to guess the value of n.

Well-formedness of an Expanded Scaffold We constrain the well-formedness of each transition
system in the expanded scaffold exp = Expand

D,R
n,Dprf

(Rflow) using Eq. (4.10).

WellFormCond(exp) =
∧

choose {[]gi→si}i ∈cond(exp)

WellFormTS({[]gi → si}i) (4.11)

where cond(exp) recursively examines the expanded scaffold exp and returns the set of all choose
statements in it.

Example 4.4 For the expanded scaffold in Example 4.2, since each acyclic fragment only contains
one guarded transition, the well-formedness constraints are simple and state that each of g1, g2, g3 =
true and valid(s1) ∧ valid(s2) ∧ valid(s3) holds.

87

Definition 4.4 (Concretizing conditionals) A choose {[]gi → si}i=1..n construct from the lan-
guage TSL is said to have a n−concretization to the language IML if there exists a structured
acyclic fragment A of the form if g then S else S, such that for any Fpre and Fpost, the triple
{Fpre}A{Fpost} holds if and only if the triple {Fpre}choose {[]gi → si}i=1..n {Fpost

′} holds, where
Fpost

′ is the prime renamed Fpost.

Lemma 4.4 WellFormCond(exp) is satisfied iff each choose {[]gi → si}i=1..n ∈ cond(exp) has a
n−concretization to the language IML.

Proof: We prove each direction in turn:

⇒ If WellFormCond(exp) is satisfied, then for each each si satisfies valid(si) and each guard set
{gk}k satisfies

∨
k gk. First, since valid(si) ensures that each variable has one and only one

equality assignment in si, therefore by standard SSA transforms, we know that si corresponds
to a sequence of state-updating assignments Si

.
= (x1 := e1;x2 := e2; . . xn := en). That

implies that each {B}si{Fpost
′} holds iff {B}Si{Fpost} holds, for any B. Second, to show

the result, we just need to prove that if each guard set {gk}k satisfies
∨
k gk then there exists

a structured acyclic fragment A with (statements Si’s and) guards such that application of
the conditional rule for Hoare triples results in exactly in the subgoals {Fpre ∧ gi}Si{Fpost}.
(This would imply that the verification conditions are identical, given Eq. 4.3.) Consider
first the case when all gi’s are disjoint, i.e., for i 6= j the expression gi ∧ gj is unsatisfiable.
In this case, it is simple to see that the cascade of if-then-else’s results in guard predicates
¬g1 ∧¬g2 . . .¬gi−1 ∧ gi which is equivalent to gi because of disjointedness. Additionally, the
default branch of the conditional has the guard ¬(∨gi) which is unsatisfiable (because ∨igi
holds), resulting in a trivial Hoare triple. Hence, the result holds for the case of disjoint
guards.

The extension to non-disjoint guards is simple. Consider two non-disjoint guards gi and gj
(with i 6= j). Then let us split these two into three parts g′i, g

′
j , and gi+j , where gi+j

.
= gi∧gj ,

and g′i
.
= gi ∧¬gi+j , and g′j

.
= gj ∧¬gi+j . In this construction, each of the three are disjoint.

We can use the above construction for disjoint guards, with the only consideration being
which statement set to use for gi+j . But for each state that satisfies gi+j it also satisfies both
gi, and gj , and for each its corresponding statement set yields identically valid Hoare triples.
Hence, we can use either statement set with the same the resulting acyclic fragment having
identical semantic interpretations.

⇐ We need to prove that if each choose construct has a n−concretization then WellFormCond(exp)
is satisfiable. If every choose construct has a n−concretization then by Definition 4.4 there
exists a structured acyclic fragment A of the form if g then S else S (with normal form
having a max cut of n) such that both the fragment and the choose construct identically
satisfy respective Hoare triples.

We assume that A is in normal form (which by Lemma 4.1 is without loss of generality).
Since a sequence of state-updating assignments Si can be converted trivially into a basic
block in SSA form (with one assignment to each variable), we have that the corresponding
si satisfies valid(si). Additionally, to be semantically equivalent in general, each Si and
corresponding si should only be executed under identical guard conditions. By Lemma 4.2,
we know that the disjunctions of the conditions immediately before the statements in the
normal form is a tautology, and hence ∨igi holds.

�

We extend the definition of concretizing conditionals to programs:

Definition 4.5 (Concretizing programs) A program in the language TSL is said to have a
program concretization (with parameter n) to the language IML if there exists a n−concretization
for each choose construct and the loop and sequencing operations are translated as is.

88

Lemma 4.5 Assume that WellFormCond(exp) is satisfied. Then SafetyCond(exp, (Fpre, Fpost)) is
satisfied if and only if {Fpre}P{Fpost} holds, where the program P is any program concretization
of exp with parameter n. (Here, the n used is the same as used to construct the expansion exp.)

Proof: Because WellFormCond(exp) holds, by Lemma 4.4 we know that each conditional has a
concretization and therefore examining Definition 4.5, we know that there exists a program
concretization P for exp.

We prove by structural induction that SafetyCond(exp,F) encodes exactly the verifications for
the program P .

• Base case: The base case in the language TSL is a singleton choose construct. The definition
of PathC for such a fragment, Eq. 4.4, and with Eq. 4.3, show that the result holds.

• Inductive case: For the inductive case, we assume that PathC generates the verification
condition for a statement sequence ~p in the language TSL.

The first inductive case is of a singleton while construct around ~p. The definition of PathC
for this case, Eq. 4.5, generates the three parts of the verification condition as required. The
first conjunct being the formula for loop entry, the second the loop body case (with the
invariant τ conjuncted with the loop guard g for entry as the antecedent) which is correct
by induction, and the last the loop exit (with the invariant τ conjuncted with the negation
of the guard g as the antecedent).

The second inductive case is of the sequencing operator. There are two ways in which
a sequence of statements ~p can be extended by sequencing (without loss of generality, by
adding a prefix) using either (1) a while or (2) a choose construct.

1. Using a while construct: The definition of PathC for this case, Eq. 4.6, generates
verification conditions for the loop entry, body, and exit. The constraints for the first
two are identical to the case above, and correctly generate the verification condition
for those cases. For the exit, the exit path has the precondition τ ∧ ¬g, and PathC

recursively examines the remainder of the sequence. By the induction hypothesis, this
generates the correct verification condition for that path.

2. Using a choose construct: We assume, without loss of generality (Lemma 4.1), that all
acyclic fragments are in normal form, which can be encoded using a single large enough
choose construct. Therefore, no two choose constructs appear in succession. The only
case then is that each is followed immediately by a while. Therefore, this case consists
of two subcases. One, in which the while is the terminal statement, and another in
which it is followed by the remaining subsequence. For the first, the definition of PathC,
Eq. 4.7, generates the verification condition for the choose construct starting with the
precondition, and ending at the loop invariant τ . It then generates the verification
condition for the loop body, which is correct because of the induction hypothesis, and
lastly it generates the verification condition for the exit path (as in Eq. 4.5.) The second
case, Eq. 4.8, simply generalizes this argument for the exit path (and which is correct
using an argument identical to that used for Eq. 4.6.)

�

4.3.5 Encoding Progress: Ranking functions

Until now our encoding has focused on safety conditions that, by themselves, only ensure
partial correctness but not termination. Next, we add progress constraints to ensure that the
synthesized programs terminate.

To encode progress for a loop l = whileτ,ϕl(g) do {~p}, we assert the existence of a ranking
function as an unknown (numerical) expression ϕl that is lower bounded and decreases with each

89

iteration of the loop. Because ϕl is an unknown expression it is difficult to encode directly that it
decreases. Therefore, we introduce a tracking variable rl, such that rl = ϕl. We use rl to remember
the value of the ranking function at the head of the loop, and because it is a proof variable no
assignments to it can appear in the body of the loop. On the other hand, ϕl changes due to the
loop body, and at the end of the iteration we can then check if the new value is strictly less than
the old value, i.e., rl > ϕl. Without loss of generality, we pick a lower bound of 0 for the tracking
variable and conservatively assume that the termination argument is implied by the loop invariant
τ , i.e, τ ⇒ rl ≥ 0.

Now that we have asserted the lower bound, what remains is to assert that ϕl decreases
in each iteration. Assume, for the time being, that the body does not contain any nested loops.
Then we can capture the effect of the loop body using PathC as defined earlier, with precondition
τ ∧ g and postcondition rl > ϕ. Then, the progress constraint for loop l without any inner loop is:

prog(l)
.
= rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ PathC(τ ∧ g, ~p, rl > ϕl) (4.12)

Using the above definition of progress we define the progress constraint for the entire ex-
panded scaffold exp = Expand

D,R
n,Dprf

(Rflow):

RankCond(exp) =
∧

l∈loops(exp)

prog(l) (4.13)

where loops(exp) recursively examines the expanded scaffold exp and returns the set of all loops
in it.

Example 4.5 In the expanded scaffold of Example 4.2 there is only one loop, whose ranking
function we denote by ϕl and with tracker rl. Then we generate the following progress constraint:

rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ (τ ∧ g0 ∧ g2 ∧ s2 ⇒ r′l > ϕ′l)

To relax the assumption we made earlier about no nesting of loops, we need a simple
modification to the progress constraint prog(l). Instead of considering the effect of the entire body
~p (which now contains inner loops), we instead consider the fragment end(l) after the last inner
loop in ~p. Also, let τend denote the invariant for the last inner loop. Then, the progress constraint
for loop l is:

prog(l)
.
= rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ PathC(τend, end(l), rl > ϕl)

Notice that because the loop invariants are not decided a priori, i.e., we are not doing program
extraction, we may assert that the invariants should be strong enough to satisfy the progress
constraints. Specifically, we have imposed the requirement that the intermediate loop invariants
carry enough information such that it suffices to consider only the last loop invariant τend in the
assertion.

We give our notion of termination a name:

Definition 4.6 (Tenable termination argument) A loop l = whileτ,ϕl(g) do {~p} has a ten-
able termination argument if there exists a numerical expression rl (called a ranking function) that
(1) satisfies rl ≥ 0 at loop entry and on each iteration through the loop, and (2) rl decreases in
each iteration of the loop.

Using the above definition we can classify the set of programs for which we can prove
termination:

Lemma 4.6 RankCond(exp) is satisfiable if and only if each loop in the program has a tenable
termination argument.

Proof: We prove each direction in turn:

90

⇒ If RankCond(exp) is satisfiable then each loop has a tenable termination argument: If RankCond(exp)
holds then prog(l) holds for each loop l. Then each conjunct of Eq. 4.12 holds. The first
conjunct holds if and only if rl exists that is a numerical expression. The second conjunct
holds if and only if the facts that hold in each iteration, i.e., the loop invariant τ , imply
the non-negativeness of rl in each iteration. Thus rl satisfies condition (1) of Definition 4.6.
The third conjunct holds if and only if the value of rl at the end of an arbitrary loop it-
eration (computed by an application of PathC under the strongest facts that hold at the
beginning, i.e., τ ∧ g) is strictly more than at the beginning. Thus rl satisfies condition (2)
of Definition 4.6 as well.

⇐ If each loop has a tenable termination argument then RankCond(exp) is satisfiable: Since a
tenable termination argument exists, there exists a numerical expression rl. Therefore the
first conjunct of Eq. 4.12 is satisfiable. The conditions on rl in Definition 4.6 ensure that the
remaining two conjuncts of prog(l) are also satisfiable. Condition (1) ensures that rl ≥ 0 is a
fact that holds inductively for the loop. Therefore it appears in the inductive loop invariant
τ . Hence τ ⇒ rl ≥ 0. Condition (2) ensures that the value of the ranking function at the
end of a loop iteration is strictly less than at the beginning, i.e., PathC(τ ∧ g, ~p, rl > ϕl) is
satisfiable (under the strongest assumptions τ ∧ g allowed at the beginning of the loop with
body ~p.)

�

The following corollary is straight-forward:

Corollary 4.1 RankCond(exp) is satisfiable if and only if the program is terminating (using tenable
termination arguments for each loop.)

4.3.6 Entire Synthesis Condition

Finally, we combine the constraints from the preceding sections to yield the entire synthesis
condition for an expanded scaffold exp = Expand

D,R
n,Dprf

(Rflow). The constraint SafetyCond(exp,F)

(Eq. 4.9) ensures partial correctness of the program with respect to the functional specification.
The constraint WellFormCond(exp) (Eq. 4.11) restricts the space to programs with valid control-
flow. The constraint RankCond(exp) (Eq. 4.13) restricts the space to terminating programs. The
entire synthesis condition is given by

sc = SafetyCond(exp,F) ∧ WellFormCond(exp) ∧ RankCond(exp)

Notice that we have omitted the implicit quantifiers for the sake of clarity. The actual form
is ∃U∀V : sc. The set V denotes the program variables, ~vin ∪ ~vout ∪ T ∪ L where T is the
set of temporaries (additional local variables) as specified by the scaffold and L is the set of
iteration counters and ranking function trackers. Also, U is the set of all unknowns of various
types instantiated during the expansion of scaffold. This includes unknowns for the invariants τ ,
the guards g and the statements s.

Example 4.6 Accumulating the partial correctness, well-formedness of branching and progress
constraints we get the following synthesis condition (where we have removed the trivial guards
g1, g2, g3 as discussed in Example 4.4):

x ≥ 1 ∧ s1 ⇒ τ ′ ∧
τ ∧ g0 ∧ s2 ⇒ τ ′ ∧

τ ∧ ¬g0 ∧ s3 ⇒ (i′ − 1)2 ≤ x′ ∧ x′ < i′2 ∧
valid(s1) ∧ valid(s2) ∧ valid(s3) ∧
rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ (τ ∧ g0 ∧ s2 ⇒ r′l > ϕ′l)

91

Input: Scaffold 〈F,D,R〉, maximum transitions n, proof domain Dprf

Output: Executable program or FAIL
begin

exp := Expand
n,Dprf

D,R (Rflow);
sc := SafetyCond(exp,F) ∧

WellFormCond(exp) ∧
RankCond(exp);

π := Solver(sc);

if (unsat(π)) then
return FAIL;

returnExeπ(exp);
end

Figure 4.2: The proof-theoretic synthesis algorithm.

Here is a valid solution to the above constraints:

τ : v = i2 ∧ x ≥ (i− 1)2 ∧ i ≥ 1
g0 : v ≤ x
ϕl : x− (i− 1)2

s1 : v′ = 1 ∧ i′ = 1 ∧ x′ = x ∧ r′l = rl
s2 : v′ = v + 2i+ 1 ∧ i′ = i+ 1 ∧ x′ = x ∧ r′l = rl
s3 : v′ = v ∧ i′ = i ∧ x′ = x ∧ r′l = rl

(4.14)

Notice how each of the unknowns satisfy their domain constraints, i.e., τ is from FOL over
quadratic relations, ϕl is a quadratic expression, s1, s2, and s3 are conjunctions of linear equalities
and g0 is from quantifier-free FOL over linear relations. In the next section we show how such
solutions can be computed using existing tools, e.g., the ones we developed in Chapters 2 and 3.

Under the assumption [91] that every loop with a pre- and postcondition has an inductive
proof of correctness, and every terminating loop has a ranking function, and that the domains
chosen are expressive enough, we can prove that the synthesis conditions, for the case of non-
iterative upper bounded well-formedness, model the program faithfully:

Theorem 4.1 (Soundness and Completeness) The synthesis conditions corresponding to a
scaffold are satisfiable iff there exists a program (with a maximum of n transitions in each acyclic
fragment where n is the parameter to the expansion) that is valid with respect to the scaffold and
terminating (with tenable termination arguments).

Proof: We prove each direction of the theorem in turn:

⇒ (If the synthesis condition is satisfiable then there exists a program that is valid with respect
to a scaffold.) If the synthesis condition is satisfiable then each of WellFormCond(exp),
SafetyCond(exp,F), and RankCond(exp) are satisfiable, and by the same solution P . Because
of this the following hold for the program P :

– P ’s acyclic fragments come from the language IML: By Lemma 4.4.

– {Fpre}P{Fpost} holds: By Lemma 4.5.

– P is terminating: By Corollary 4.1.

Because the above three properties hold of P , consequently P is valid with respect to the
scaffold by Definition 4.1.

92

⇐ (If a program P exists that is valid with respect to the scaffold, is n-branching, and is terminat-
ing (with a tenable termination argument for each loop) then the synthesis conditions are sat-
isfiable.) We show that each of WellFormCond(exp), SafetyCond(exp,F), and RankCond(exp)
are satisfiable, in particular by the same solution that corresponds to the program P . Since
all have at least one satisfying assignment together, the synthesis condition is satisfiable.

– Because the program is n-branching, by Lemma 4.3, we know that its conditionals
are n-concretizations to the language IML. Therefore, by Lemma 4.4, we have that
WellFormCond(exp) holds.

– Because the program is valid with respect to the scaffold {Fpre}P{Fpost} holds and
consequently we can apply the reverse direction of Lemma 4.5. Notice that the as-
sumption WellFormCond(exp) of the lemma holds because of the argument above and
since the program is n-branching, by Lemma 4.3, we know that it is the concretization
of exp with parameter n. Therefore, by the application of Lemma 4.5 we have the
SafetyCond(exp,F) holds.

– Since each loop in the program has a tenable termination argument, RankCond(exp) is
satisfiable by Corollary 4.1.

�

4.4 Solving Synthesis Conditions

In this section we describe how the synthesis conditions for an expanded scaffold can be
solved using already existing fixed-point computation tools (program verifiers). We described two
such tool, VS3

LIA and VS3
PA in the previous chapters. While our experiments were with these tools,

we can employ any verifier, Solver(sc), long as it meets certain requirements that we describe.
Suppose we have a procedure Solver(sc) that can generate solutions to a synthesis condition

sc. Figure 4.2 shows our synthesis algorithm, which expands the given scaffold to exp, constructs
synthesis conditions sc, uses Solver(sc) to generate a solution π to the unknowns that appear
in the constraints, and finally generates concrete programs (whose acyclic fragments are from the
language IML from Section 4.2) using the postprocessor Exeπ(exp).

The concretization function Exeπ(exp) takes the solution π that is computed by Solver(sc)
and the expanded scaffold exp, and outputs a program whose acyclic fragments are from the
language IML. The function defines a concretization for each statement in TSL and annotates
each loop with its loop invariant and ranking function:

Exeπ(p;~p) = Exeπ(p);Exeπ(~p)

Exeπ(whileτ,ϕ(g) do {~p}) = whileπ(τ),π(ϕl)(π(g)) { Exeπ(~p) }
Exeπ(choose {[]g → s}) = if (π(g)) {Stmt(π(s))} else {skip}

Exeπ(choose {[]gi → si}i=1..n) = (where n > 1)
if (π(g1)) {Stmt(π(s1))}
else {Exeπ(choose {[]gi → si}i=2..n)}

where π maps each s to a conjunction of equalities and the concretization function Stmt(s) expands
the equality predicates to their corresponding state updates:

Stmt(
∧

i=1..n

xi = ei)
.
= (t1 := e1; . . ;tn := en);(x1 := t1; . . ;xn := tn)

The above is a simple translation that uses additional fresh temporary variables t1 . . tn to simulate
parallel assignment. Alternatively, one can use data dependency analysis to generate code that
uses fewer temporary variables.

93

4.4.1 Basic Requirement for Solver(sc)

Our objective is to use off-the-shelf verification tools to implement Solver(sc), but we realize
that not all tools are powerful enough. For use as a solver for synthesis conditions, verification
tools require certain properties.

Let us first recall the notion of the polarity, positive or negative, of unknowns in a formula
from Figure 3.5 in Chapter 3. Let φ be a FOL formula with unknowns whose occurrences are
unique. Notice that all the constraints we generate have unique occurrences as we rename appro-
priately. An unknown is positive if strengthening it makes φ stronger. Analogously, an unknown
is negative if weakening it makes the formula stronger. Also, recall that structurally, the nesting
depth under negation defines whether an unknown is positive (even depth) or negative (odd depth).
For example, the formula (a∨¬b)∧¬(¬c∨d) has positive unknowns {a, c} and negative unknowns
{b, d}.

In program verification we infer loop invariants given verification conditions with known
program statements. Let us reconsider the verification condition in Eq. (4.1) with known program
statements and guards. Notice that the implication constraints can be categorized into three forms;
those with unknowns on both sides τ ∧ f1 ⇒ τ ′, those with unknowns only in the antecedent
τ ∧ f2 ⇒ f3, and those with unknowns only in the consequent f4 ⇒ τ ′; where fi’s denote known
formulae. Also, observe that these three are the only forms in which constraints in verification
conditions can occur. From these, we can see that the verification conditions contain at most one
positive and one negative unknown, depending on whether the corresponding path ends or starts at
an invariant. Program verification tools implementing typical fixed-point computation algorithms
are specialized to work solely with constraints with one positive and one negative unknown because
there is no need to be more general.

In fact, traditional iterative fixed-point computation is even more specialized in that it
requires support for either just one positive unknown or just one negative unknown. Traditional
verifiers work either in a forward (computing least fixed-point) or backwards (computing greatest-
fixed point) direction starting with the approximation ⊥ or >, respectively, and iteratively refining
it.

A backwards iterative data flow analyzer always instantiates the positive unknown to the
current approximation and uses the resulting constraint (with only one negative unknown) to
improve the approximation. For example, suppose the current approximation to the invariant τ
is f5. Then a backwards analyzer may instantiate τ ′ in the constraint τ ∧ f1 ⇒ τ ′ to get the
formula τ ∧ f1 ⇒ f ′5 (with one negative unknown τ). It will then use the formula to improve the
approximation by computing a new value for τ that makes this formula satisfiable.

On the other hand, a typical forwards iterative data flow analyzer instantiates the negative
unknown to the current approximation and uses the resulting constraint (with only one positive
unknown) to improve the approximation. For example, suppose the current approximation to the
invariant τ is f6, then a forwards analyzer may instantiate τ in the constraint τ ∧ f1 ⇒ τ ′ to get
the formula f6 ∧ f1 ⇒ τ ′ (with one positive unknown τ ′). It will then use the formula to improve
the approximation by computing a new value for τ ′ that makes this formula satisfiable.

In contrast, let us consider the components (from Section 4.3) of the synthesis condition.
The component SafetyCond(exp) (Eq. (4.9)), in addition to the unknowns due to the invariants τ ,
contains unknowns for the program guards g and program statements s. These unknowns appear
exclusively as negative unknowns, and there can be multiple such unknowns in each constraint.
For example, in Eq. (4.1), the guards and statement unknowns appear as negative unknowns.
On the other hand, the component WellFormCond(exp) (Eq. (4.11)) contains the well-formedness
condition on the guards ∨igi that is a constraint with multiple positive unknowns. Therefore we
need a verifier that satisfies the following.

Requirement 4.1 Support for multiple positive and multiple negative unknowns.

Notice this requirement is more general than that supported by typical verifiers we discussed
above.

94

Now consider, an example safety constraint such as τ ∧ g ∧ s ⇒ τ ′ with unknowns τ , g
and s. This constraint can be rewritten as τ ⇒ τ ′ ∨ ¬g ∨ ¬s. Also, let us rewrite an example
well-formedness constraint ∨gi as true ⇒ ∨gi. This view presents an alternative explanation for
Requirement 4.1 in that we need a tool that can infer the right case split, which in most cases
would not be unique and would require maintaining multiple orthogonal solutions. Intuitively, this
is related to a tool’s ability to infer disjunctive facts.

In the above we implicitly assumed the invariant to be a conjunction of predicates. In
the general case, we may wish to infer more expressive (disjunctive) invariants, e.g., of the form
u1 ⇒ u2 or ∀k : u3 ⇒ u4, where ui’s are unknowns. In this case, multiple negative and positive
unknowns appear even in the verification condition, and therefore the verification tool must satisfy
Requirement 4.1, which matches the intuition that disjunctive inference is required.

4.4.2 Satisfiability-based Verifiers as Solver(sc)

Satisfiability-based fixed-point computation is a relatively recent approach to program ver-
ification that has been successfully used for difficult analyses. In previous chapters, we designed
efficient satisfiability-based verification tools VS3

LIA and VS3
PA for predicate abstraction (Chapter 3)

and linear arithmetic (Chapter 2), respectively. Both VS3
LIA and VS3

PA satisfy Requirement 4.1.
Satisfiability-based verification tools reduce a verification condition vc (with invariant un-

knowns) to a boolean constraint ψ(vc) such that a satisfying solution to the boolean constraint
corresponds to valid invariants. Working with either linear arithmetic or predicate abstraction,
the following is a restatement of results from previous chapters (Theorem 2.1 from Chapter 2, and
Theorem 3.2 from Chapter 3) for satisfiability-based fixed-point computation:

Corollary 4.2 The boolean constraint ψ(vc) is satisfiable iff there exists a fixed-point solution for
the unknowns corresponding to the invariants.

The reduction can also be applied to synthesis condition sc to get boolean constraints ψ(sc) and
a similar property holds. The boolean constraint is satisfiable iff there exist satisfying statements,
guards and invariants to the synthesis condition.

4.4.3 Iterative Verifiers as Solver(sc)

Let us now consider the case where the verification tool cannot handle non-standard con-
straints, such as Eq. (4.10). This is the case for typical iterative program verification tools that
compute increasingly better approximations to invariants. We show that despite this lack of ex-
pressivity it is still possible to solve synthesis conditions as long as the tool satisfies an additional
requirement.

The only constraint in the synthesis condition sc that is not an implication is WellFormCond(sc).
In Section 4.3.4, we discussed how an iterative lower-bounded search can discover the transitions
{[]gi → si}i without asserting Eq. (4.11). There we had left the question of ensuring valid(si)
unanswered. Consider now the case where a valid solution gi, si exists (i.e., si is not false or
that valid(si) holds) that satisfies the constraint set. As an instance, in Example 4.6, we have
a synthesis condition for which a valid solution exists as shown by Eq. (4.14). Notice that this
solution is strictly weaker than another solution that assigns identical values to other unknowns
but assigns false to any of s2, s2, or s3. In fact, we can observe that if the tool only generates
maximally weak solutions then between these two solutions (which are comparable as we saw),
it will always pick the one in which it does not assign false to statement unknowns. Therefore,
it will always generate si such that valid(si) holds unless no such si exists. As a result, if the
program verification tool satisfies the following requirement, then we can omit Eq. (4.11) from the
synthesis condition and still solve it using the tool.

Requirement 4.2 Solutions are maximally weak.

This requirement corresponds to the tool’s ability to compute weakest preconditions. The
typical approach to weakest preconditions (greatest fixed-point) computation propagates facts

95

backwards, but this is considered difficult and therefore not many tools exist that do this. How-
ever, although traditional iterative data flow verifiers fail to meet Requirements 4.1 and 4.2, our
iterative fixed-point computation approach from Chapter 3 computes maximally weak solutions
and therefore satisfies the requirements.

In addition to ensuring valid(si), maximally weak solutions also ensure that in each step of
the iterative lower bounded search (Section 4.3.4), the algorithm will make maximal progress and
converge faster. If the tool did not generate maximally weak solutions, then the iterative search
for guards could take many more iterations to converge to a tautology. The downside is that the
tool does more work than required. We require maximally weak solutions only for the statement
unknowns, but instead the tool will generate maximally weak solutions for guards and invariants
as well. This is not needed for synthesis as we are interested in any solution that satisfies the
synthesis condition. Thus, the satisfiability-based scheme (which computes any fixed-point in the
lattice rather than the greatest fixed-point) outperforms the iterative scheme in our experiments.
In fact, tools based on iterative approximations do not terminate for most benchmarks, and we
therefore perform the experiments using satisfiability-based tools.

4.5 Experimental Case Studies

To evaluate our approach, we synthesized examples in three categories: First, easy to specify
but tricky to program arithmetic programs; second, sorting programs which all have the same
specification but yield different sorting strategies depending on the resource constraints; third,
dynamic programming programs for which naive solutions yield exponential runtimes, but which
can be computed in polynomial time by suitable memoization.

4.5.1 Implementation

We implement our synthesis algorithm using existing satisfiability-based verifiers VS3
LIA and

VS3
PA, but which we augment as described below. Also, to simplify user input, we expanded user

specified flowgraphs to be more expressive for certain cases.

Verification Tools Our synthesis technique relies on an underlying program verification tool. We
took our VS3

LIA and VS3
PA verifiers and used them as synthesis solvers. These tools are state-of-the-art

and can infer expressive invariants such as those requiring quantification and disjunction. However,
for some of the benchmarks, the reasoning required was beyond even these their capabilities. We
therefore extended the base verifiers with the following features.

• Quadratic expressions for arithmetic For handling quadratic expressions in the proofs, we
implemented a sound but incomplete technique that renames quadratic expressions to fresh
variables and then uses linear arithmetic reasoning of VS3

LIA. We will discuss this encoding in
detail in Section 6.2.2.2. This encoding suffices for most of our benchmarks except for one
(integral square root), which we handle by explicitly encoding an assumption. We call this
augmented solver VS3

QA.

• Axiomatization Proposals exist for extending verification tools with axioms for theories they
do not natively support, e.g., the theory of reachability for lists [173]. We take such ax-
iomatization a step further and allow the user to specify axioms over uninterpreted symbols
that define computations. We implement this in VS3

PA to specify the meaning of dynamic
programming programs, e.g., the definition of Fibonacci. We call this augmented solver
VS3

AX.

Note that these extensions are to facilitate verification and not synthesis. The synthesis
solver is exactly the same as the verification tool. The details of these extensions are presented in
Chapter 6.

96

Flowgraphs with Init/Final Phases In practice a fair number of loops have characteristic initial-
ization and finalization phases that exhibit behavior different from the rest of the loop. In theory,
verifiers should be able to infer loop invariants that capture such semantically different phases.
However, this requires disjunctive reasoning, which is fairly expensive if at all supported by the
verifier. In particular, while our tools VS3

LIA and VS3
PA do support disjunctions, it is more expensive

to handle than just conjunctive facts. On the other hand, other tools require non-trivial work to be
lifted to disjunctive reasoning. For instance, abstract interpretation-based tools require expensive
disjunctive completions of domains [77, 119].

We use an alternate expansion Expand
n
(T) that introduces acyclic fragments for the ini-

tialization and finalization if synthesis without them fails. For instance, for Example 4.1, the the
user only needs to specify the flowgraph ∗(◦) instead of the more complicated ◦;∗(◦);◦. Except for
the expansion of loops, Expand

n
(T) expands all other statements exactly like Expandn(T) does.

For loops, it builds an initialization and finalization phase as follows.

Expand
n
(∗(T))=Expandn(◦); → Added initialization

whileτ (g) {Expand n(T);}
Expandn(◦); → Added finalization

4.5.2 Algorithms that use arithmetic

For this category, we pick Dprf to be quadratic arithmetic and use as our solver the VS3
QA

tool. We chose a set of arithmetic benchmarks with simple-to-state functional specifications but
each containing some tricky insight that human programmers may miss.

Swapping without Temporaries Consider a program that swaps two integer-valued variables with-
out using a temporary. The precondition and postcondition to the program are specified as
Fpost

.
= (x = c2 ∧ y = c1) and Fpre

.
= (x = c1 ∧ y = c2), respectively. We specify an acyclic

flowgraph template Rflow
.
= ◦ and a computation template Rcomp

.
= ∅ that imposes no constraints.

To ensure that no temporaries are used we specify Rstack
.
= ∅. The synthesizer generates various

versions of the program, e.g.,

Swap(int x, y){x := x+ y; y := x− y;x := x− y; }

The synthesizer also finds numerous other alternative programs that are semantically equivalent,
e.g.,

Swap(int x, y){x := x− y; y := x+ y;x := −x+ y; }
Since we allow for non-trivial sized bit vectors for the coefficients, the total number of alternative
solutions enumerated is of the order of thousands.

Strassen’s 2×2 Matrix Multiplication Consider Strassen’s matrix multiplication, which computes
the product of two n× n matrices in Θ(n2.81) time instead of Θ(n3). The key to this algorithm is
an acyclic fragment that computes the product of two 2× 2 input matrices {aij , bij}i,j=1,2 using 7
multiplications instead of the expected 8. Used recursively, this results in asymptotic savings. The
key insight of the algorithm lies in this core. Recursive block multiplication was well known, and
Strassen augmented it with an efficient core. We synthesize the crucial acyclic fragment, which
is shown in Figure 4.3. Here the precondition Fpre is true and the postcondition Fpost is the
conjunction of four equalities as (over the outputs {cij}i,j=1,2):(

c11 c12

c21 c22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
The synthesizer also generates many alternate versions that are functionally equivalent to Fig-
ure 4.3.

As a side note, we also attempted synthesis using 6 multiplications, which failed. This sug-
gests that possibly no asymptotically faster solution exists using simple quadratic computations—
theoretical results up to n2.376 are known [71], but use products that cannot be easily be captured
in the simple domains considered here.

97

Strassens(int aij , bij) {
v1:=(a11+a22)(b11+b22)
v2:=(a21+a22)b11

v3:=a11(b12-b22)
v4:=a22(b21-b11)
v5:=(a11+a12)b22

v6:=(a21-a11)(b11+b12)
v7:=(a12-a22)(b21+b22)
c11:=v1+v4-v5+v7

c12:=v3+v5

c21:=v2+v4

c22:=v1+v3-v2+v6

return cij;
}

Figure 4.3: Synthesis result for Strassen’s Matrix Multiplication using the arithmetic solver.

Integral Square Root Consider computing the integral square root b
√
xc of a positive number x

using only linear or quadratic operations. The precondition is Fpre
.
= x ≥ 1 and the postcondition,

involving the output i, is Fpost
.
= (i− 1)2 ≤ x < i2. We provide a single loop flowgraph template

Rflow
.
= ∗(◦) and an empty computation template Rcomp

.
= ∅. The synthesizer generates different

programs depending on the domain constraints and the stack template:

• Rstack
.
= {(int, 0)} and we allow quadratic expressions in Dexp and Dgrd. The synthesized

program does a sequential search downwards starting from i = x by continuously recomputing
and checking (i− 1)2 against x.

• Rstack
.
= {(int, 1)} and we only allow linear expressions in Dexp and Dgrd. The synthesized

program does a sequential search but uses the additional local variable (rather surprisingly) to
track the value of (i−1)2 using only linear updates. The synthesized program is Example 4.1,
from earlier.

• Rstack
.
= {(int, 2)} and we allow quadratic expressions in Dexp and Dgrd. The synthesized

program does a binary search for the value of i and uses the two additional local variables
to hold the low and high end of the binary search space.

Notice that the stack template only specifies an upper bound. As such, for successively higher
number of variables programs that use fewer variables are also valid solutions. The synthesizer
generates all solutions, in particular, including those that use fewer variables than what the stack
template specifies. We use the enumeration facility in satisfiability-based verifiers to enumerate all
valid solutions. In the above description, for higher number of variables, we mention that programs
that are generated in addition to the ones before.

Bresenham’s Line Drawing Algorithm Consider Bresenham’s line drawing algorithm, as we dis-
cussed in Section 4.1.1. For efficiency, the algorithm only uses linear updates, which are non-trivial
to verify [108] or even understand (let alone discover from scratch).

We specify the precondition Fpre
.
= 0 < Y ≤ X. The postcondition (as presented in

Section 4.1.1) is quantified, but VS3
QA does not support quantification. Therefore we provide a

facility to annotate the flowgraph template with the assertion |2y − 2(Y/X)x| ≤ 1 at the loop
header and specify that the loop iterates over x = 0 . . X. This indicates the tradeoffs we can
make in our technique. The user can offset the limitations of the available verification tool by
indicating extra known values in the scaffold. We specify a single loop flowgraph Rflow

.
= ∗(◦) and

empty stack and computation templates Rstack
.
= ∅, Rcomp

.
= ∅. The synthesizer generates multiple

versions, one of which is shown in Figure 4.1(a).

98

4.5.3 Sorting Algorithms

For this category, we pick Dprf to be predicate abstraction and use as our solver the VS3
PA

tool.
The sortedness specification consists of the precondition Fpre

.
= true and the postcondition

Fpost
.
= ∀k : 0 ≤ k < n ⇒ A[k] ≤ A[k + 1]. The full functional specification would also ensure

that the output array is a permutation of the input, but verifying—and thus, synthesizing—the
full specification is outside the capabilities of most automated tools today.

We therefore use a mechanism to limit the space of programs to desirable sorting algorithms,
while still only using Fpost. We limitDexp to include only those operations that maintain elements—
for example, swapping elements or moving elements to unoccupied locations. Using this mechanism,
we ensure that invalid algorithms (that replicate or lose array elements) are not considered.

Non-recursive sorting algorithms Consider comparison-based sorting programs that are composed
of nested loops. We specify a flowgraph template Rflow

.
= ∗(∗(◦)) and a computation template

Rcomp that limits the operations to swapping of array values.

• Rstack
.
= ∅: The synthesizer produces two sorting programs that are valid with respect to the

scaffold. One corresponds to Bubble Sort and the other is a non-standard version of Insertion
Sort. The standard version of Insertion Sort uses a temporary variable to hold the inserted
object. Since we do not provide a temporary variable, the synthesized program moves the
inserted element by swapping it with its neighbor, while still performing operations similar
to Insertion Sort.

• Rstack
.
= {(int, 1)}: The synthesizer produces another sorting program that uses the tempo-

rary variable to hold an array index. This program corresponds to Selection Sort and is shown
in Figure 4.4. Notice the non-trivial invariants and ranking functions that are synthesized
alongside for each of the loops.

Recursive divide-and-conquer sorting Consider comparison-based sorting programs that use re-
cursion. We make a few simple modifications to the system to specify recursive programs. First, we
introduce a terminal string ~ to the flowgraph template language, representing a recursive call.2

Let (Fpre(~vin), Fpost(~vout)) denote the functional specification. Then we augment the expansion to
handle the new flowgraph string as follows:

Expandn(~) = choose{[]true→ srecur}

where srecur = sargs∧(Fpre(~vin
′)⇒ Fpost(~vout

′′))∧sret sets values to the arguments of the recursive
call (using sargs), assumes the effect of the recursive call (using Fpre(~vin

′)⇒ Fpost(~vout
′′), with the

input arguments renamed to ~vin
′ and the return variables renamed to ~vout

′′) and lastly, outputs
the returned values into program variables (using sret). The statements sargs, sret take the form:

sargs =
∧
i xi = ei where xi ∈ ~vin

′, ei ∈ Dexp|Vars
sret =

∧
i xi = ei where xi ∈ Vars, ei ∈ Dexp| ~vout′′

Here Vars denote the variables of the procedure (the input, output and local stack variables). We
also tweak the statement concretization function to output a recursive call statement rec:

Stmt(Fpre(~vin
′)⇒Fpost(~vout

′′)) = ~vout
′′ := rec(~vin

′)

We specify a computation template that allows only swapping or moving of elements. We then try
different values of the flowgraph and stack templates:

2Our notation has agreeable symmetry in that it denotes implicit iteration using acyclic fragments—hence the
combination of ◦ and ∗.

99

SelSort(int A[], n) {
i1:=0;
whileτ1,ϕ1(i1 < n− 1)
v1:=i1;
i2:=i1+1;
whileτ2,ϕ2(i2 < n)

if (A[i2]<A[v1])
v1:=i2;

i2++;
swap(A[i1], A[v1]);
i1++;

return A;
}

Ranking functions:
ϕ1 : n− i1 − 2
ϕ2 : n− i2 − 1

Invariant τ1:
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]

Invariant τ1:
i1 < i2 ∧ i1 ≤ v1 < n
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]
∀k : i1 ≤ k < i2 ∧ k ≥ 0⇒ A[v1] ≤ A[k]

Figure 4.4: Synthesis result for Selection Sort. For ease of presentation, we omit degenerate
conditional branches, i.e. true/false guards, We name the loop iteration counters L = {i1, i2, . .}
and the temporary stack variables T = {v1, v2, . .}.

• Rflow
.
= ~;~;◦ (two recursive calls followed by an acyclic fragment) and Rstack

.
= ∅: The

synthesizer produces a program that recursively sorts subparts and then combines the results.
This corresponds to Merge Sort.

• Rflow
.
= ◦;~;~ (an acyclic fragment followed by two recursive calls) and Rstack

.
= {(int, 1)}:

The synthesizer produces a program that partitions the elements and then recursively sorts
the subparts. This corresponds to Quick Sort.

4.5.4 Dynamic Programming Algorithms

For this category, we pick Dprf to be predicate abstraction and use as our solver the VS3
AX

tool. We choose all the textbook dynamic programming examples [72] and attempt to synthesize
them from their functional specifications.

The first hurdle (even for verification) for these algorithms is that the meaning of the
computation is not easily specified. To address this issue, we need support for axioms, which are
typically recursive definitions.

Definitional Axioms Our tool VS3
AX allows the user to define the meaning of a computation as

an uninterpreted symbol, with (recursive) quantified facts defining the semantics of the symbol
axiomatically. For example, the semantics of Fibonacci are defined in terms of the symbol Fib and
the axioms:

Fib(0) = 0
Fib(1) = 1
∀k : k ≥ 0⇒ Fib(k + 2) = Fib(k + 1) + Fib(k)

100

The tool passes the given symbol and its definitional axioms to the underlying theorem prover
(Z3 [87]), which assumes the axioms before every theorem proving query. This allows the tool to
verify dynamic programming programs.

Even with verification in place, automatic synthesis of these programs involves three non-
trivial tasks for the synthesizer. First, the synthesizer needs to automatically discover a strategy
for translating the recursion (in the functional specification) to non-recursive iteration (for the
actual computation). The functional specifications do not contain this information, e.g., in the
specification for Fibonacci above, the iteration strategy for the computation is not evident. Second,
the synthesizer needs to take the (non-directional) equalities in the specifications and impose
directionality such that elements are computed in the right order. For example, for Fibonacci the
synthesizer needs to automatically discover that Fib(k) and Fib(k+1) should be computed before
Fib(k + 2). Third, the synthesizer needs to discover an efficient memoization strategy for only
those results needed for future computations, to fit the computation in the space provided—which
is one of the benefits of dynamic programming algorithms. A naive hashmap-based strategy for
memoization wastes space. On the other hand, if the synthesizer is able to infer the pieces of
the computation required in the future, just from the recursive functional definition, then it can
selectively overwrite old results and optimize the space required. For example, Fibonacci can be
computed using only two additional memory locations by suitable memoization. Fortunately, just
by specifying the resource constraints and using our proof-theoretic approach the synthesizer is
able to perform these tasks and synthesize dynamic programming algorithms from their recursive
functional specifications.

Also, as in the case of sorting, we want to disallow completely arbitrary computations. In
sorting, we could uniformly restrict the expression language to only swap and move operations.
For dynamic programming, the specification of the operations is problem-specific. For instance,
for shortest path, we only want to allow the path matrix updates that correspond to valid paths,
e.g., disallow arbitrary multiplication of path weights. Rcomp specifies these constraints by only
permitting updates through certain predicates.

Dynamic programming solutions typically have an initialization phase (init-loop) and then
a phase (work-loop) that fills the appropriate entries in the table. Therefore, we chose a Rflow with
an init-loop (∗(◦)) followed by a work-loop.

By specifying a flowgraph template Rflow
.
= ∗(◦);∗(◦) and a stack template with no ad-

ditional variables (except for the case of Fibonacci, where the synthesizer required Rstack
.
=

{(int, 2)}), we were able to synthesize the following four examples:

Fibonacci Consider computing the nth Fibonacci number from the functional specification as
above. Our synthesizer generates a program that memoizes the solutions to the two subproblems
Fib(i1) and Fib(i1 +1) in the i1th iteration. It maintains a sliding window for the two subproblems
and stores their solutions in the two additional stack variables. The synthesized program along
with its invariant and ranking function is shown in Figure 4.5.

Checkerboard Consider computing the least-cost path in a rectangular grid (with costs at each
grid location), from the bottom row to the top row. The functional specification states the path
cost for a grid location in terms of the path costs for possible previous locations (i.e., below left,
below, or below right). Our synthesizer generates a program that finds the minimum cost paths.

Longest Common Subsequence (LCS) Consider computing the longest common substring that
appears in the same order in two given input strings (as arrays of characters). The recursive
functional specification relates the cost of a substring against the cost of substrings with one fewer
character. Our synthesizer generates a program for LCS.

Single Source Shortest Path Consider computing the least-cost path from a designated source to
all other nodes where the weight of edges is given as a cost function for each source and destination
pair. The recursive functional specification states the cost structure for all nodes in terms of the

101

Fib(int n) {
v1:=0;v1:=1;i1:=0;
whileτ,ϕ(i1 ≤ n)
v1:=v1+v2;swap(v1, v2);
i1++;

return v1;
}

Ranking function ϕ:
x− s

Invariant τ :
v1 = Fib(i1) ∧ v2 = Fib(i1+1)

Figure 4.5: Synthesis results for a dynamic programming program, Fibonnaci. Here, we name the
loop iteration counters L = {i1, i2, . .} and the temporary stack variables T = {v1, v2, . .}.

cost structure of all nodes if one fewer hop is allowed. Our synthesizer generates a program for the
single source shortest path problem.

For the following two examples, synthesis failed with the simpler work-loop, but we synthe-
size the examples by specifying a flowgraph template ∗(◦);∗(∗(◦)) and no additional stack variables:

All-pairs Shortest Path Consider computing all-pairs shortest paths using a recursive functional
specification similar to the one we used for single source shortest path. Our synthesizer times
out for this example. We therefore attempt synthesis by (i) specifying the acyclic fragments and
synthesizing the guards, and (ii) specifying the guards and synthesizing the acyclic fragments.
In each case, our synthesizer generates the other component, corresponding to Floyd-Warshall’s
algorithm.

Matrix Chain Multiply Consider computing the optimal way to multiply a matrix chain. Depend-
ing on the bracketing, the total number of multiplications varies. We wish to find the bracketing
that minimizes the number of multiplications. E.g., if we use the simple n3 multiplication for two
matrices, then A10×100B100×1C1×50 can either takes 1,500 multiplications for (AB)C or 55,000
multiplications for A(BC). The functional specification defines the cost of multiplying a partic-
ular chain of matrices in terms of the cost of a chain with one fewer element. Our synthesizer
generates a program that computes the optimal matrix bracketing.

4.5.5 Performance

Table 4.1 presents the performance of a satisfiability-based synthesizer over arithmetic,
sorting and dynamic programming benchmarks. All runtimes are median of three runs, measured
in seconds. We measure the time for verification and the time for synthesis using the same tool.
The total synthesis time varies between 0.12 and 9658.52 seconds, depending on the difficulty of
the benchmark, with a median runtime of 14.23 seconds. The factor slowdown for synthesis varies
between 1.09 and 92.28, with a median of 6.68.

The benchmarks we used are considered difficult even for verification. Consequently the low
average runtimes for proof-theoretic synthesis are encouraging. Also, the slowdown for synthesis
compared to verification is acceptable, and shows that we can indeed exploit the advances in
verification to our advantage for synthesis.

3These timings are for separately (i) synthesizing the loop guards, and (ii) synthesizing the acyclic fragments.
We fail to synthesize the entire program, but with these hints provided by the user, our synthesizer can produce
the remaining program.

102

Benchmark Verif. Synthesis Ratio

A
ri

th
.

(V
S
3 Q
A
) Swap two 0.11 0.12 1.09

Strassen’s 0.11 4.98 45.27
Sqrt (linear search) 0.84 9.96 11.86
Sqrt (binary search) 0.63 1.83 2.90
Bresenham’s 166.54 9658.52 58.00

S
o
rt

in
g

(V
S
3 P
A
) Bubble Sort 1.27 3.19 2.51

Insertion Sort 2.49 5.41 2.17
Selection Sort 23.77 164.57 6.92
Merge Sort 18.86 50.00 2.65
Quick Sort 1.74 160.57 92.28

D
y
n
a
m

ic
P

ro
g
.

(V
S
3 A
X
) Fibonacci 0.37 5.90 15.95

Checkerboard 0.39 0.96 2.46
Longest Common Subseq. 0.53 14.23 26.85
Matrix Chain Multiply 6.85 88.35 12.90
Single-Src Shortest Path 46.58 124.01 2.66

All-pairs Shortest Path3 112.28
(i) 226.71
(ii) 750.11

(i) 2.02
(ii) 6.68

Table 4.1: Experimental results for proof-theoretic synthesis over different domain. (a) Arithmetic
(b) Sorting (c) Dynamic Programming. For each category, we indicate the tool used to solve the
verification conditions and the synthesis conditions.

4.5.6 Discussion

The synthesis of the expressive programs reported in this chapter is made feasible by the
use of some simplifying ideas that we discuss here.

Array flattening Two (and higher) dimensional arrays, while making it easier for human program-
mers to reason about data, and indices into it, have little semantic benefit over one dimensional
arrays. E.g., instead of indexing an 2D-array using a pair (i, j), a semantically identical 1D-array
can be used, indexed by an integer i ∗ rowsize + j. To the synthesizer, or in pseudocode, these
representations are essentially identical, and we can arbitrarily pick the one more convenient. The
theory of arrays is more conveniently defined over flatted arrays and therefore our synthesized pro-
grams are in that representation. This also removes some arbitrary non-determinism (in the space
of programs) and simplifies control flow (instead of nested iteration counters, a single iteration
counter suffices). Array flattening also facilitates abstracting layout non-determinism for dynamic
programming examples as described below.

Abstracting layout Most benchmarks for dynamic programming memoize results to subproblems
by filling a table. Aside from some causal constraints there is little definedness in the order in
which entries are filled out. Thus there is no one unique way of laying out the entries in the table.

For programs that manipulate a two (or higher) dimensional table, we realize that the layout
of the entries is immaterial as long as some ordering constraints are maintained amongst the entries.
For example, a program that traverses the top-left half-triangle of a square matrix using diagonals
can be rewritten as a program that traverses the bottom-left half-triangle using row-wise traversals.
Both of these can in turn be rewritten as straight-line traversal over a one-dimensional array as
well, i.e. the layout can be flattened.

We let the user specify the layout constraints again over uninterpreted layout functions and
synthesize the program over these abstract layout functions. Note that now, the definitional axioms
also have to be defined using the layout functions. The constraints over the layout functions can

103

later be used to synthesize arbitrary concrete layouts to get executable programs. For example,
the layout constraint for a program that does a diagonal traversal of the top-left triangle of a
square matrix is defined in terms of functions up, left and the constraints up(x) < x∧ left(x) <
x ∧ up(left(x)) < x ∧ left(up(x)) < x. Once a program has been synthesized in terms of these
functions, a simple theorem proving query can find a satisfying concretization to the functions
and the program can be rewritten as a two dimensional traversal. This theorem proving query
is a simple ∃ query to find a satisfying solution for the layout constraints. One way to formulate
the ∃ query would be to use templates for the abstract functions and solve for coefficients similar
to our approach in Chapter 2. For example, if n is the dimension of the matrix then left(x)

.
=

x − 1, up(x)
.
= x − n would be the natural concretization, but any other concretization satisfying

the constraints would be valid too. For instance, one that traverses the bottom-left triangle in
row-order.

Computational templates We now discuss how computational templates help restrict program
operations to a desired space, alleviating the massive undertaking of verifying termination, and
full functional correctness in a single step.

To synthesize programs that meet a given functional behavior, this chapter argues that, at
least, one must be capable of verifying that behavior. Not only that, to be useful for synthesis
the full functional verification needs to be done in one step, and cannot be done piecewise. While
piecewise verification can verify partial programs properties by considering them in turn, piecewise
synthesis may yield solutions that are mutually inconsistent and therefore irreconcilable. That said,
there might be a way out.

While functional specifications define the computation theoretically, the results in this chap-
ter indicate that other information, e.g., domain and resource restriction, can make the synthesis
task practical. The use of resource constraints, specifically, the computational restrictions, removes
the need to assert part of functional specifications in certain cases. For instance, for the case of
sorting, while the full functional specification asserts that the output array is a permutation of the
input, using the computational template we restrict array writes to swaps, eliminating the need to
assert a permutation constraint. Similarly, for the case of dynamic programming benchmarks, we
ensure that updating to the memoization table are through limited operations that do not violate
core soundness, eliminating a need to assert part of the functional specification.

Choosing good programs The system described in this chapter does not attempt to attach a
preferability metric to programs—except of course it prefers correct, well-formed, and terminating
programs.

Theoretically, functional specifications capture the desired computation. But in practice,
programmers also care about the resources (space and time) used by their programs and of the
average case performance. There might be other concerns, such as particular memory access
patterns, or ordered computations etc., that certain programmers, for instance, security aware
developers, may care about.

There are three possibilities for synthesizing such good programs. First, we may leave it up
to the programmer and have the automated tool just enumerate all valid solutions. This is the
approach we currently follow. Second, we may encode domain specific constraints, e.g., limiting
network communication, in addition to safety, termination, and well-formedness, to ensure the
synthesizer only generates good programs. This is, in spirit, similar to our core technique presented
in this chapter, and we will potentially pursue this next. Lastly, we may use an iterative mechanism
on top of the core synthesizer to filter the good candidates which the tool enumerates. This is, in
spirit, similar to previous work on Sketching [246] that enumerates candidate programs and uses a
model checker to eliminate bad programs, where in their case, the bad programs are those that do
not meet the safety criteria. This approach may indeed be the only plausible one for complicated
performance issues such as optimizing cache performance that are hard to model as constraints.

Modular synthesis Our use of swap operations in sorting, layout functions in dynamic program-
ming, and in general synthesizing programs over a given set of predicates, is an instance of syn-

104

thesis with respect to an abstraction. Albeit, an abstraction that is user provided. Other authors
have also explored the use of such provided abstractions to design compositional synthesis sys-
tems [153, 154].

In the future, we wish to design a synthesis system that automatically infers a suitable
abstraction boundary and synthesizes functions in terms of the interface thus defined. [260]

4.6 Summary

This chapter presented a principled approach to synthesis that treats synthesis as a gener-
alized verification problem. The novelty of this approach lies in generating synthesis conditions,
which are composed of safety conditions, well-formedness conditions, and progress conditions, such
that a satisfying solution to the synthesis conditions corresponds to a synthesized program. We
used verification tools VS3

LIA and VS3
PA from previous chapters to synthesize programs, and, simulta-

neously, their proof (invariants, ranking functions). We demonstrated the viability of our approach
by synthesizing difficult examples in the three domains of arithmetic, sorting, and dynamic pro-
gramming, all in very reasonable time.

4.7 Further Reading

Deductive Synthesis Deductive synthesis is an approach to synthesis that generates programs
through iterative refinement of the specification. At each step of the refinement, well-defined proof
rules are used, each of which corresponds to the introduction of a programming construct. For
instance, case splits in the proof leads to a conditionals in the program, induction in the program
leads to loops in the program. Deductive synthesis was explored in work by Manna, Waldinger and
others in the 1960’s and 1970’s [196]. The core idea was to extract the program from the proof of
realizability of the formula ∀~x : ∃~y : pre(~x)⇒ post(~x, ~y), where ~x and ~y are the input and output
vectors, respectively [130, 266].

The approach presented here can be seen as automating deductive synthesis. Additionally,
the technical insight added by this dissertation is the realization that while human-guided proof-
refinement implicitly steers away from pathological cases, when automating the process, a critical
requirement is to ensure well-formedness and termination, in addition to refining the safety proof.

Alternative exciting directions The interested reader is also advised to follow the developments by
other independent groups of techniques that are similar in spirit, i.e., are automatic and deductive,
but differ in technical content. Of particular interest is the work by Vechev, Yahav and Yorsh [261]
on iterative refinement of the proof and program. Another exciting direction is the work by
Kuncak’s group on decision procedures for program synthesis [172, 198] to be incorporated into
custom solvers. Other related work is reviewed in Chapter 8.

105

Chapter 5

Path-based Inductive Synthesis:
Testing-inspired Program
Synthesis

“I don’t know what my path is yet. I’m
just walking on it.”

— Olivia Newton-John1

This chapter describes a novel technique that synthesizes programs using an approach in-
spired by, and providing approximate guarantees as in, testing. Our approach combines ideas from
symbolic execution-based testing and satisfiability-based program analysis.

We describe the technique as working over a template of the program to be synthesized. For
the applications we consider we find that we can automatically mine this template. The mined
template finitizes the space of programs, but the space is still exponential. To efficiently find a
solution, we propose a technique that iteratively prunes away invalid programs from the search
space. We pick a candidate solution to the synthesis and identify a feasible path for the candidate
through the template. Using ideas from satisfiability-based analysis we find potential solutions that
satisfy the specification for the set of paths accumulated. We continue this Path-based Inductive
Synthesis (PINS) procedure until the space contains only valid inverses.

We apply PINS to the problem of automatically generating program inverses, i.e., of syn-
thesizing a program P−1 that negates the computation of a given program P . This problem arises
naturally in paired computations such as compression-decompression, serialization-deserialization,
transactional memory rollback, and bidirectional programming. Automatic program inversion can
alleviate the cost associated with maintaining two closely related programs, and ensure correctness
and maintainability. We make two observations. First, we observe that the control flow structure
of the inverse is very similar to the original program. Therefore we can automatically mining
the flowgraph, expression and predicate sets from the original program. Our approach limits user
effort to simple modifications of the mined template, if at all required. Second, we observe that
the specification of inversion is trivial (identity) when we consider the concatenation (sequential
composition) of the original program with its inverse. We apply PINS to the template formed by
the concatenation of the original known program with the mined unknown program to synthesize
inverses.

We also apply PINS to the problem of automatically generating paired network programs,
such as clients from servers or vice versa. We exploit the observation that for these paired programs,
the desired program has a control flow structure very related to its pair, and the expressions and
guards are related as well. From the original program, we syntactically mine the control flow
structure, expression and guard sets for its pair—that we intend to synthesize—finitizing the
problem and then apply PINS to synthesize valid solutions.

1English-born, Australian raised singer/actress and an environmental, animal rights, and breast cancer activist.

106

Using PINS, we show we can synthesize inverses for compressors (e.g., LZ77), packers (e.g.,
UUEncode), and arithmetic transformers (e.g., image rotations). Additionally, we use PINS to
synthesize a TFTP client from its server. These programs (and their corresponding pairs) range
from 5 to 20 lines of code, and PINS synthesizes them in a median time of 40 seconds, demonstrating
the viability of our synthesis approach.

5.1 Using Symbolic Testing to Synthesize Programs

Testing can be considered as an approximation to formal verification. In a similar vein,
we intend to develop a synthesis technique with approximate guarantees. While the approach in
the previous chapter provides formal guarantees, it does so by inferring program invariants, which
may be complicated. The approach in this chapter does not provide formal guarantees, but can
synthesize programs without reference to invariants. The added expense of inferring proofs may
be justified when synthesizing critical software, but in this chapter we consider the case where
the proof is only of auxiliary importance, and we wish the technique to automatically generate
complicated, hard to maintain, programs.

The approach in this chapter does not rely on formal verifiers, unlike proof-theoretic synthe-
sis and as some other previous approaches do [246]. Formal verifiers are hard to build, are domain
specific, and for the programs we target in this chapter, we do not know of any tools that can
formally verify them correct. On the other hand, testing, and in our case symbolic testing [166]
(Section 5.3), has been shown to be a good (approximate) verification strategy—perhaps the only
one in the absence of formal verifiers—and therefore can potentially be employed for synthesis.
Our technique, called PINS, consists of the following steps:

Step 1 (Finitize the problem) We finitize the problem by constructing a flowgraph template with
placeholders for guards and expressions, and a set of potential expression and predicate sets
for those placeholders. While PINS is a general synthesis technique that works over a given
template flowgraph and expressions and predicate sets, for the case of our application, i.e.,
inversion, we will be able to mine the program Prog to get the flowgraph and expression and
predicate sets for P−1.

Step 2 (Encode correctness constraints using paths) We use symbolic execution to generate correct-
ness (safety and termination) constraints over a set of paths through the template program.
We then use SMT reasoning to convert these constraints into concise SAT constraints which
we solve for candidate solutions. These candidate solutions satisfy all the correctness con-
straints for those paths.

Step 3 (Refine solution space) We generate new feasible paths for some candidate solution that we
generated in Step 2. Note that a candidate program may not be a valid program for the
synthesis task as it is only correct up to the set of paths explored until that point. Therefore,
we generate a new path parameterized by this candidate solution. Our novel path construc-
tion works without a formal verifier, and instead of attempting to find a counterexample it
generates paths that reinforce valid solutions and are likely to eliminate invalid solutions.

Step 4 (Repeat 2,3 until stabilized) We iteratively use Steps 2 and 3 to refine the space of candidate
solutions until only valid ones remain.

The distinguishing feature of our approach is that at no point do we try to formally prove
that a candidate solution is actually a valid synthesis solution. Instead, our approach is more like
symbolic testing: we try to find a set of paths that provide sufficient witness that our candidates
are indeed valid. More precisely, let sols be the set of solutions we output after stabilization. Then
for each S ∈ sols, the corresponding candidate program is indeed valid on every path explored,
i.e., it met the specification on each of the explored paths. Analogously, for every S 6∈ sols that
the algorithm discarded during iteration, at least one path was explored that shows that S violates
the specification. Once we have sufficient coverage, there is only a small chance that the resulting

107

Prog

in(A,n)
assume(n ≥ 0);
i:=0; j:=0;
while (i < n)

r:=0;
while (A[i] = 0)

r++; i++;
if (r = 0)

B[j++]:=A[i++];
else

B[j++]:=−r;
out(B, j)

Input Output
Stream Stream

0
0
0 −3
1 1
1 1
2 2
0 −1
3 4
0 −2
0 1
1

(a) (b)

Figure 5.1: Illustrating PINS using an example. (a) A program that compresses runs of a special
integer “0” in an array with non-negative integers (b) An input array with its corresponding
compressed output.

P̂rog

in(B, j)
〈i′, j′ := ε1, ε2〉
while (ρ1)
〈r′ := ε3〉
if (ρ2)
〈A′, i′, j′ := ε4, ε5, ε6〉

else

〈r′, j′ := ε7, ε8〉
while (ρ3)
〈A′, r′, i′ := ε9, ε10, ε11〉

out(A′, i′)

Πe
0, r′ − 1,−sel(B, j′),
upd(A′, i′,sel(B, j′)),
i′ + 1, j′ + 1,−1

Πp{
B[j′] > 0, j′ < j,

r′ > 0, i′ > 0

}

P−1

in(B, j)
i′:=0; j′:=0;
while (j′ < j)

r′:=0;
if (B[j′] > 0)

A′[i′++]:=B[j′++];
else

r′:=−B[j′++];
while (r′ > 0)

A′[i′++]:=0; r′--;
out(A′, i′)

(a) (b) (c)

Figure 5.2: Ilustrating PINS using an example: (a) The flowgraph template P̂rog for synthesis (b)

The expression set Πe and predicate set Πp for synthesis (c) The synthesized inverse, which is P̂rog
instantiated with a solution S = {ε1 7→ 0, ε2 7→ 0, ρ1 7→ {j′ < j}, ε3 7→ 0 . .}.

solution is not a true solution to the synthesis problem—and in our experience, PINS is able to
refine the search space down to a single valid program most of the time (Section 5.4).

We apply PINS to the problem of automatic program inversion [90, 131, 55, 102, 120] (Sec-
tion 5.5). Specifically, we consider inverting an injective program Prog by finding another program
P−1 that is its left inverse.

5.2 Motivating Example and Technical Overview

In this section, we illustrate PINS using an example. Consider the program Prog shown in
Figure 5.1(a). Prog compresses a particular frequently occurring integer designated by 0. This
is in fact a simplified version of a full run-length encoder, which our technique can also invert
(Section 5.6). In the outer loop the program processes the integers of the input array A, of length
n, and in each iteration Prog counts the number of occurrences r of the special integer. If the count
is non-zero then it outputs the count (negated to distinguish it from the other positive integers)
to the output array B. If the count is zero it copies the non-zero integer as-is to the output array
B. Figure 5.1(b) shows an example input array and corresponding output array.

108

Now suppose, for the moment, that the user specifies a flowgraph template, i.e., an unknown
partial program, P̂rog, shown in Figure 5.2(a), for the inverse. A flowgraph template consists
of control flow structures, guarded with unknown predicates ρi’s, and parallel assignment blocks
〈x1, x2 . . := ε1, ε2, . .〉, indicating that the variables x1, x2, . . are assigned the unknown expression
ε1, ε2, . ., respectively. Parallel assignment ensures that we can ignore the order in which the
variables are assigned in a basic block (as described in Chapter 4). Also suppose, for the moment,
that the user specifies a candidate predicate set Πp and expression set Πe (Figure 5.2(b)) that can
be used to instantiate the ρ’s and ε’s, respectively. Such user-provided sets are standard, as in
the previous chapter and in other approaches to synthesis [246] and predicate abstraction-based
verification [129]. We shall see later that for program inversion the sets can almost entirely be
mined from the original program, alleviating the human effort involved in guessing these sets.

Notice that the above only finitizes the solution space, but efficiency solving for an inverse
is still not easy. Even for this small flowgraph, with 10 holes that range over 7 expressions and
3 holes that range over subsets (conjunctions) of 4 predicates, the space of possible inverses has
710 × (3 × 24) ≈ 234 solutions if types are ignored and 69 × (3 × 24) ≈ 229 otherwise. Therefore
a naive exhaustive search for a solution will not work, and so we describe a strategy that implic-
itly categories solutions and constructs symbolic paths that prune invalid categories of solutions
iteratively.

Solving for the inverse using directed symbolic testing Given the flowgraph template P̂rog, pred-
icate set Πp, and expression set Πe, we now describe a path-based approach that can synthesize
the inverse P−1.

We use symbolic execution to generate safety and termination constraints through the partial
program Prog ; P̂rog. Symbolic testing allows us to generate the constraints without needing
complicated loop invariants. We reduce these constraints to SAT constraints using techniques
that we described in Chapter 3. We then solve the SAT instance to get candidate inverses. For
instance, one path, through Prog ; P̂rog is n ≥ 0; i := 0; j := 0; i ≥ n; 〈i′, j′ := ε1, ε2〉;¬ρ1. This
path generates the safety constraint:

∃E∀X :

(
n0 ≥ 0 ∧ i1 = 0 ∧ j1 = 0 ∧ i1 ≥ n0 ∧

i′2 = ε1
V1 ∧ j′2 = ε2

V1 ∧ ¬ρ1V2

)
⇒ id

with id
.
= (n0 = i′2) ∧ (∀k : 0 ≤ k < n0 ⇒ A0[k] = A′0[k])

where E andX are the set of unknowns {ε1, ε2, ρ1} and the set of program variables {n0, i1, j1, i′2, j′2},
respectively. The integer superscripts denote the version numbers of the program variables. Each
assignment to a program variable increments its version number. Unknowns are superscripted with
version maps from program variables to their latest version. When an unknown is instantiated,
the variables in the substitution are lifted to the versions specified by the map. For example, for
ε1
V1 the version map is V1 = {n 7→ 0, i 7→ 1, . . .}. So if ε1

V1 is instantiated with the expression
i − n + 1, the result is i1 − n0 + 1 Also, the identity fact id is syntactically generated from the
annotations in(A,n) and out(A′, i′) with the fact that A and A′ are arrays with lengths n and i′,
respectively.

Notice that from the first line in the antecedent we get n0 ≥ 0∧(i1 = 0 ≥ n0), which implies
n0 = 0. Therefore the quantified fact in id is trivially satisfied, but to prove n0 = i′2 we need εV1

1

to be 0. The only expression from Πe that we can assign to ε1 to ensure this is 0 (and then εV1
1

will be 0 too).
PINS solves such constraints using the technique described in Section 3.6.2 that converts the

above SMT constraints into SAT constraints over boolean indicator variables bε 7→ε̄ (i.e., Eq. 3.7).
That indicator variable being assigned to true in a solution corresponds to unknown ε having the
expression ε̄ ∈ Πe. Thus, the SAT instance generated from the current path will contain the clause
with the sole literal:

(bε1 7→0) (5.1)

i.e., saying “unknown ε1 must map to 0.”
But notice that given our expression and predicate sets, this is not the only way to satisfy

the safety constraint above. We could also make the antecedent false, which happens under the

109

assignment ε2 7→ −1 and ρ1 7→ {j′ < j}. (Note that expressions map to single values while pred-
icates map to subsets indicating conjunction.) Under these assignments the antecedent contains
j1 = 0 ∧ j′2 = −1 ∧ ¬(j′2 < j1), which simplifies to false and therefore satisfies the constraint
trivially. Thus, the SAT instance PINS solves will actually have the above clause disjuncted with
the following (and others cases that result in false):

(bε2 7→−1 ∧ bρ1 7→j′<j) (5.2)

Clause (5.2) does not constrain ε1 at all. If the solution map from these is used to instantiate P̂rog,
we see that clause (5.2) allows solutions that correspond to invalid inverses. On the other hand,
ε0 7→ 0 is part of the solution for a true valid inverse. Therefore the next step is to add paths to
constrain the indicators further to eliminate Eq. 5.2 while leaving Eq. 5.1 as the only possibility.

We could use random path exploration to find new paths, but in practice we have found
that approach fails to converge in a reasonable amount of time. PINS therefore uses a novel path
construction algorithm that, given a solution S, finds a path that is expected to be relevant to S.

Let [[P̂rog]]S stand for the instantiation of P̂rog with S. Given S, we use symbolic execution

to find a new, feasible path through ([[P̂rog]]S), meaning one such that the antecedent of the safety
constraint is not false. By forcing the path to be feasible, we constrain the search space so that
any remaining solutions have a reasonable number of feasible paths over which they satisfy the
specification. In contrast, random path exploration tends to generate paths that are infeasible.
(Notice that we are solving for the inverse program as part of this process, so we cannot a priori
identify the feasibility of a path without fixing a particular S.)

For example, consider an invalid solution SEq.5.2 = {ε2 7→ −1, ρ1 7→ {j′ < j}} ∪ S′ that is
allowed by Eq. 5.2, where S′ assigns any value to the remaining unknowns, lets say, S′

.
= {ε1 7→

0, ε3 7→ 0, ε4 7→ upd(A′, i′, sel(B, j′)), ε5 7→ i′+1, ε6 7→ j′+1, ρ2 7→ {B[j′] > 0}, ρ3 7→ {r′ > 0}, . .}
. Since j ≥ 0 at the end of the original program, all feasible paths will enter the outer loop
of the inverse at least once for this solution. Specifically, one path is n ≥ 0; i := 0; j := 0; i ≥
n; 〈i′, j′ := ε1, ε2〉; ρ1; r′ := ε3; ρ2; 〈A′, i′, j′ := ε4, ε5, ε6〉;¬ρ3;¬ρ1. If we substitute SEq.5.2 into the
constraint generated we find that i′ = 1 and n = 0 at the end of the path, and so the safety
assertion requiring their equality is violated. Additionally, the antecedent of the constraint does
not imply false by construction. Therefore, adding the constraint corresponding to this path
eliminates SEq.5.2. Notice that this path is only feasible with respect to this solution, and in
particular, infeasible for any valid inverse. So in synthesis even infeasible paths (with respect to
valid inverses) help prune the search space, as long as they are chosen carefully.

Iteratively refining the space using directed path generation as above yields a constraint
satisfied by solutions with a reasonable number, typically less than 15-20, of feasible paths for
each. In our example, this iterative process yields the valid inverse P−1, shown in Figure 5.2(c).

Mining the template of the inverse For the kind of non-trivial inverses we intend to synthesize,
we find that the flowgraph, expression, and predicate sets are difficult for the user to guess from
scratch. On the other hand, the often-mentioned approach of enumerating all possible predicates
and expressions between program variables does not scale due to the large solution space in syn-
thesis. Previous approaches (even our approach in the previous chapter and others [246]) do not
provide any concrete suggestions about where to get the predicates from. Fortunately, we can
exploit the structure of the inversion problem to mine these from the given program Prog. Our
approach is inspired by Dijkstra’s observation that at times, inverses are just the original pro-
gram read backwards (the edges are reversed, variables read in Prog are assigned to in P−1, and
expressions in Prog are replaced by their “inverses” in P−1). We find that not all inverses work
this way. Occasionally, the flow of control in P−1 is in the same direction as in Prog (edges are
not reversed, variables assigned are the same, and expressions have the same form), and at times
blocks of statements need to be omitted. Instead of guessing the entire flowgraph, expression and
predicate sets, we ask the user to just guess these forwards ↓, backwards ↑, or deletion × tags
on the main control flow structures (loops, conditionals, and main entry point)—typically starting
with all ↑ tags. For example, with tags of ↓, ↑, ↑, on the entry and two nested loops in Figure 5.1(a),

110

we can mine values for the flowgraph template, Πe, and Πp. If synthesis fails with the initial values
the user makes minor tweaks (guided by the paths PINS explored for eliminating all solutions).
Our mining heuristic yielded Figure 5.2(a,b)—with the minor user tweaks underlined. Notice that
because of the ↑ tag on the outer loop, the order of the enclosed conditional and loop are correctly
reversed.

5.3 Preliminaries

We now define the language of programs and our formalism for symbolic execution.

Language of Statements Our algorithm operates over programs with statements given by the
following language:

stmt ::= x := e | assume(p) | stmt; stmt
e ::= ε̄ | ε
p ::= ρ̄ | ρ
ε̄ ::= x | ufs(x) | ε̄ opa ε̄ | sel(ε̄, ε̄) | upd(ε̄, ε̄, ε̄)
ρ̄ ::= ε̄ opr ε̄

The language consists of assignments x := e between a variable x and an expression e, assume
statements assume(p) that take a predicate p, and the sequencing operator ‘;’. Expressions are
either known ε̄ or unknown symbols ε. Similarly, predicates are either known ρ̄ or unknown symbols
ρ. Known expressions ε̄ come from a standard language with variables x, arithmetic operations
opa, array operators sel and upd, and uninterpreted function symbols ufs. Known predicates ρ̄
are pairs of known expressions separated by relational operators opr. For notational convenience,
we may use the skip statement as well, which can be modeled in the language as assume(true).

Programs and their composition Programs in our system consist of statements as above and
control flow edges. We assume that the program is structured and does not contain arbitrary
jumps, i.e., loops are well-formed and can be easily identified from the control flow graph. Our
language contains assume statements and so, without loss of generality, we treat all branches as
non-deterministic.

We will use Prog to denote a known program, and P̂rog to denote a program with unknowns.
In our formalism this means that Prog contains only known expressions (ε̄) and known predicates

(ρ̄), while P̂rog may additionally contain unknown expressions (ε) and unknown predicates (ρ).
This formalism also allows us to freely mix statements of either form to build partial programs,
and PINS can potentially be used to complete arbitrary partial programs.

Versioned variables and expressions We associate an integer version with each variable. The
versions denote the different values taken by the variables at different points in time. A versioned
variable xv denotes the variable x at version v. This notion is extended to versioned predicates
and expressions. A versioned expression eV is the expression e with each variable x in it replaced
with the versioned variable xV [x] at the version as given by the map V . This is straightforward
for known expressions ε̄, and for unknown expressions ε we delay assigning versions to variables
until the unknown has been replaced with a known. Similarly, we define a versioned predicate pV

for a predicate p and version map V . We will use Vinit to denote an initial version map with
Vinit[x] = 0 for all variables x in the program.

Paths, Path Constraints and (In)feasibility A path in the program is a sequence of assignments
or assume statements seen while following the control flow edges from the beginning to the end of
the program. A path constraint or trace τ corresponding to a path is a conjunction of predicates
that are either equality predicates for assignment statements, or boolean predicates for assume
statements. Paths contain unversioned variables and expressions while path constraints contain

111

versioned variables and expressions. Assume statements assume(p) on a path give rise to versioned
predicates pV in the corresponding path constraint. Assignment statements x := e on the path
give rise to an equality xv = eV between the next version v of the variable x and the versioned
expression eV in the corresponding path constraint. We call a path feasible if its path constraint
does not imply false and infeasible otherwise.

Solution Maps and Synthesis Task A solution map S is an assignment of unknown expressions
ε and predicates ρ to known expressions ε̄ and subset of predicates {ρ̄i}i, respectively. (A subset
of predicates {ρ̄i}i stands for their conjunction ∧iρ̄i.) We define the notion of an interpretation

[[P̂rog]]S of an unknown program P̂rog with respect to a solution map S as the program with its
unknown expressions and predicates instantiated according to the map. We define a similar notion
for unknown expressions [[ε]]S, predicates [[ρ]]S (versioned or otherwise), and path constraints [[τ]]S.
A solution map need not assign to all unknowns, in which case the unassigned unknowns remain
unchanged.

Definition 5.1 (Synthesis task) Given a template program P̂rog with unknowns, and a desired
specification spec as a logical formula, the synthesis task is to find a solution map S that assigns
to all unknowns in the program, such that the following Hoare triple is valid:

{true} [[P̂rog]]S {spec} (5.3)

Symbolic execution Given a program path we generate its path constraint using the operational
semantics of a symbolic executor SymEx shown in Figure 5.3. For each statement in our language,
the symbolic executor takes the path constraint τ and version map V up to that point and returns
the updated path constraint and version map. The symbolic executor is parameterized by a
solution map S and by a set of path constraints {τi}. We will later use S to ensure that the path
is feasible for that solution and use {τi} to indicate the set of paths that are to be avoided. For
now, we can assume that the solution map S is empty, and therefore the predicate interpretation
[[pV]]S evaluates to pV .

We extend the notion of symbolic execution from paths as defined in Figure 5.3 to programs
by considering a function paths that, given a program, lazily generates paths through it. At non-
deterministic branches, it forks and generates two separate paths for each of the branches. Unlike
traditional symbolic execution, we do not specify a predetermined heuristic for selecting which
direction to take at branches. Instead we let the symbolic executor generate any feasible paths.
Later in Section 5.4.3, we will use particular solutions to guide the symbolic executor through the
unknown program.

Theorem 5.1 (No infeasible paths) The symbolic executor only generates path constraints for
feasible paths.

Proof: To prove that only feasible paths are explored, we need to show that no path constraint
generated through symbolic execution implies false.

We prove by induction over the statements in a path. Each statement in a path is either
an assume or an assignment, and each inductive step corresponds to an application of the
corresponding rule. Suppose we have a path p of length k whose path constraint is assumed
feasible by hypothesis. Then we have to show that the symbolic executor will generate a feasible
path constraint, if it generates any at all, for all paths p′ of length k + 1 with one additional
statement s appended to p. By the induction hypothesis, we know that the premise to Rule Seq
results in a τ1 that is not false. Therefore the path constraint for path p′ is the evaluation
of SymExS{τi}(τ1, V1, s). We consider two cases of the statement s being either an assume or an
assignment.

• assume: The first premise of the Rule Asm ensures that the conjunction of the current path
constraint τ and the assumed predicate can not result in false. Hence, the generated path
constraint τ ′ will be feasible if the rule is applied.

112

Asm
τ ∧ [[pV]]S 6⇒ false τ ′ = τ ∧ pV τ ′ 6∈ {τi}

SymExS{τi}(τ, V, assume(p)) = τ ′, V

Assn
v = V [x] + 1 τ ′ = τ ∧ (xv = eV) τ ′ 6∈ {τi}

SymExS{τi}(τ, V, x := e) = τ ′, V [x 7→ v]

Seq

SymExS{τi}(τ, V, st1) = τ1, V1

SymExS{τi}(τ, V, st1; st2) = SymExS{τi}(τ1, V1, st2)

Figure 5.3: The formalism for the symbolic executor.

• x := e: Rule Assn conjunct a predicate xv = eV to the path constraint. The version number
v is one more than the highest version of x that appears in the path constraint. Therefore,
xv is a symbol that does not appear in the old path constraint τ . Hence a predicate between
this new symbol and an expression (eV) cannot itself be false and its conjunction with other
predicates (i.e., τ) cannot evaluate to false if τ originally was not false.

�

5.4 PINS: Synthesizing programs using symbolic testing

In this section, we describe the steps: safety and termination constraint generation (Sec-
tion 5.4.1), SMT reduction (Section 5.4.2), and path generation (Section 5.4.3) that make up our
PINS algorithm (Section 5.4.4).

5.4.1 Safety and Termination Constraints

We now describe how we approximate safety and termination constraints using symbolic
path constraints over P̂rog.

Safety constraints using path constraints First, let us consider the task of verifying whether a
known program Prog meets its specification spec. One way to approach this problem is to look
for approximate guarantees, as in concrete or symbolic execution-based testing, and to ensure that
the specification is met on some carefully chosen set of paths through the program. As the set of
paths explored becomes larger, the guarantee becomes stronger. To check safety, we can generate
path constraints τ over the unknown program P̂rog using the empty solution map S = ∅, path
constraint set {τi} = ∅, and initial version map Vinit:

SymExS∅ (true, Vinit, t) = τ, V where t ∈ paths(P̂rog) (5.4)

For each path constraint τ (and version map V) generated above we can check if the safety
constraint for the specification holds:

∀X : τ ⇒ specV (5.5)

where X is the set of all program variables in τ and spec, and we lift the specification to the
version map at the end of the path because it specifies a relation at the end.

Notice that in the presence of loops this process will very rarely be complete, as even a
single loop can potentially yield an infinite number of unique finite paths. Still, the larger the
number of paths checked the better the assurance will be.

113

The following simple lemma states that symbolic execution is sound and complete with
respect to concrete executions:

Lemma 5.1 (Soundness, Completeness of SymEx) There exists an input, i.e., concrete values

for ~vin, for which execution of P̂rog ends in a state that does not satisfy spec, if and only if SymEx
generates a path constraint that does not satisfy Eq. 5.5. On the other hand, for all inputs the
execution of P̂rog ends in a state that satisfies spec, if and only if every path constraint generated
by SymEx satisfies Eq. 5.5.

Proof: We prove each case in turn:

• (If SymEx generates a path constraint that does not satisfy spec, then there exists a concrete
execution that does not satisfy spec.) By Theorem 5.1 we know that the symbolic executor
only generates feasible paths. Since the entire path constraint τ does not imply false, any
prefix (of the path, and the corresponding constraint) does not imply false. Consequently,
at each conditional branch point, there is are some concrete values that can be chosen such
that execution proceeds along the required branch. Therefore, if the path constraint does
not satisfy spec, an instantiation using concrete values, which is realizable as argued, will
also not satisfy spec.

• (If there exists a concrete execution that does not satisfy spec, then SymEx generates a path
that does not satisfy spec.) If there exists a concrete execution along a path, then the path
has to be feasible. Consequently, SymEx will eventually generate that path. Also, since there
exists concrete valuations for which spec does not hold on that path, it cannot hold ∀X,
hence on that path spec is violated.

• (If every path constraint generated by SymEx satisfies spec, then every input results in a
output that satisfies spec.) Every concrete input necessarily takes a particular path through
the program. For that path, we know by assumption here that the path constraint generated
by SymEx implies spec for all values of the input. Therefore, in particular, it holds for the
specific concrete value we are concerned with.

• (If every input results in an output that satisfies spec, then each path constraint generated
by SymEx satisfies spec.) Let us consider the set of all inputs that follow a particular path
through the program. By assumption we know that all inputs result in an execution that
satisfies spec, therefore the path constraint implies spec ∀X. Since this holds for every path
through the program, all constraints generated by SymEx satisfy spec.

�

Next, let P̂rog be a program with unknowns, and consider the task of synthesizing values for
the unknowns in P̂rog, i.e., finding a solution map S, such that the instantiated program [[P̂rog]]S

satisfies spec. We assume that we have a partial program P̂rog that consists of assignments of the
form x := ε (the assigned expression is unknown), and assumes of the form assume(ρ) (the assumed

predicate is also unknown). The path constraint τ generated for some path t ∈ paths(P̂rog) will
now have unknown expressions and predicates (lifted to the appropriate versions), and the safety
constraint is as before:

safepath(t, spec)
.
= ∀X : τ ⇒ specV

where SymEx∅∅(true, Vinit, t) = τ, V
(5.6)

However, safepath is implicitly quantified with ∃E,K where E is the set of all unknown expression
symbols ε, and K is the set of all unknown predicate symbols ρ. that appear in τ and spec.

Notice that with this existential over unknowns and universal over program variables, the
constraint has exactly the form that a verification condition used for invariant inference has.

114

Typical invariant inference tools, such as those described in Chapters 2 and 3, solve for I from
verification conditions of the form ∃I∀X : vc, where I is an unknown invariant. We can therefore
borrow techniques (suitably modified to take care of variables version numbers) that are devised
for invariant inference and apply them to expression and predicate inference, as we will show in
Section 5.4.2. The greater the number of paths for which the above constraint is asserted, the
greater the safety ensured.

We can then define the safety constraint for the entire program as:

safety(P̂rog, spec)
.
=

∧
t∈paths(P̂rog)

safepath(t, spec)

where again the constraint is implicitly quantified with ∃E,K. Greater assurance can be had by
considering more and more conjuncts, each corresponding to a different path t in the program.

Termination constraints using path constraints We now add constraints that ensure termination
of the synthesized program. Since loops can be easily identified in the structured programs we
consider, we prove each loop terminates by discovering its ranking function, and the entire program
terminates if all loops terminate. Our approach for discovering ranking functions is based on
assumptions that have been shown reasonable in practice [70, 68, 24]. First, we assume that the
loop guard implies an (upper or lower) bound on the ranking function. For example, if x < y is the
loop guard then y−x−1 is a candidate ranking function (bounded from below by 0 and implied by
the loop guard, i.e., x < y ⇒ y−x−1 ≥ 0). Second, we assume that the ranking function, if lower
bounded, does not increase in any of the inner loops, and if upper bounded, does not decrease in
any of the inner loops. Then we can just check the statements immediately in the body of the loop
without worrying about the inner loops modifying its termination argument. The inner loops are
proved terminating using their own ranking functions. Consider a loop l = while(ρl){Bl} with loop
guard ρl and body Bl. We assume that the ranking function for a loop l is an unknown expression
ηl on which we impose constraints for boundedness and strictly decreasing, and whose proof may
require dynamic invariants—in the spirit of trace-based invariant generation tools [103, 104].

Boundedness Under our assumption about the relation of the (unknown) loop guard ρl to
the ranking function ηl, we impose the following constraints:

bounded(l)
.
= ∀X : ρl ⇒ ηl ≥ 0

Note that here the loop guard and ranking function are not versioned and the constraint is implicitly
quantified with ∃ρl, ηl.

Strictly decreasing We assume that the inner loops do not affect the termination argument
for their enclosing loops2. In this case, we can use the path constraints for all paths through
Bl—always taking the exit branch for inner loops—to ensure that the ranking function strictly
decreases:

decrease(l)
.
=

∧
τ,V ∈exec

∀X : τ ⇒ ηl
V < ηl

0

where exec is the set of path constraints for all paths through Bl. Notice that we can enumerate
all paths through Bl because it is necessarily acyclic after we discount the inner loops.

Dynamic Invariants There are cases in which just the path constraint through the body
of the loop may not be sufficient to prove that the ranking function decreases in a loop iteration.
In these cases, we observe that two additional facts are known when traversing the body of the
loop. First, the (unknown) loop guard holds at the entry to the loop, i.e., ρ0

l can be assumed in

2If the assumptions do not hold in some case, then because of the particular strategy we use for exploring addition
paths (Section 5.4.3), the path exploration will go into an infinite loop, indicating this scenario to the user. In our
benchmarks we never encountered this case.

115

the proof. Second, there exists an (unknown) invariant φl that can be assumed in the proof, which
holds on every path through the loop and holds at the end of every path that leads up to the loop.
Incorporating the loop invariant and loop guard into the constraint we get:

decrease-inv(l)
.
=

∧
τ ′,V ′∈init ∀X ′ : τ ′ ⇒ φV

′

l ∧∧
τ,V ∈exec ∀X : τ ∧ φ0

l ⇒ φVl ∧∧
τ,V ∈exec ∀X : τ ∧ ρ0

l ∧ φ0
l ⇒ ηl

V < ηl
0

where exec are path constraints for paths through the body of the loop as before, while init are
path constraints for paths leading up to the loop entry. Notice that we cannot enumerate all of
init, so we pick the ones for paths that were explored for the safety constraint.

The termination constraints for the entire unknown program is:

terminate(P̂rog)
.
=

∧
l∈loops(P̂rog)

decrease(l) ∧ bounded(l)

where again the constraint is implicitly quantified with ∃E,K, but in addition also with exis-
tentials over ranking functions and invariants, i.e., ∃ηlφl. The function loops(P̂rog) returns all

such syntactically identified loops in P̂rog, which is possible because the program is structured.
Notice that again the constraint has the alternating quantification as found in invariant generation
constraints.

In certain cases, the termination constraint using decrease is too strong. In such cases,
right at the onset the synthesizer claims that the input is unsatisfiable and no program of the
desired form exists. We then assert the termination constraint generated using decrease-inv
instead of decrease. We give our encoding of termination a name:

Definition 5.2 (Linear termination argument) A loop l = while(ρl){Bl} is terminating with
a linear termination argument if there exists a ranking function ηl that satisfies bounded(l) and
decrease(l) (or decrease-inv if required.)

Linear termination arguments suffice for our benchmarks, but our encoding is necessar-
ily incomplete, and for more sophisticated benchmarks we expect that either termination would
be ensured externally, or more complicated or domain-specific termination constraints could be
encoded.

5.4.2 Satisfiability-based Reduction

We now describe how the safety and termination constraints we generate can be efficiently
solved using the techniques developed in Chapter 3. We have noted that the constraints are
∃∀ quantified exactly like the constraints for invariant generation. Tools for verification solve
constraints with “there exist” invariant unknown. We use these tools for invariant inference to
solve for the “there exists” expressions, predicates and ranking functions. This is similar to our
approach in Chapter 4, but different in that now the constraints do not mention invariants at
all. Yet, the tools from Chapters 2 and 3 work well for inferring the expressions, predicates and
ranking functions that we require. As described in previous chapters, this solving strategy consists
of reducing termination and safety constraints to SAT instances that we can solve using off-the-shelf
solvers.

We summarize the functionality of the satisfiability-based invariant generation tool, VS3
PA, we

employ. VS3
PA takes as input a set of (∃∀-quantified) constraints cnstr and a predicate set Πp and

an expression set Πe. The key idea in the reduction is to associate with each unknown predicate ρ
and ρ̄ pair a boolean indicator bρ7→ρ̄ that if assigned true indicates that ρ contains the predicate
ρ̄ and if assigned false that it does not. Similar indicators are associated with unknown and
known expression pairs. Then the tool makes SMT queries (which for us also need to reason about
version numbers) over cnstr to generate boolean constraints over the indicators. From the queries
it generates a SAT instance, which is then solved using standard SAT solvers. The tool infers

116

subsets, and therefore for each unknown expression ε we assert a constraint to ensure that it maps
to singleton sets.

The solution strategy consists of reducing the problem to a SAT instance, and so we can
ask it to enumerate solutions to the SAT instance. We use the wrapper

satReduceAndSolve(cnstr,Πp,Πe,m)

to denote these calls to VS3
PA. The parameter m indicates that the wrapper enumerates m solutions

(or less if less thanm exist), each satisfying cnstr. Each of thesem solutions provides an assignment
of unknowns in cnstr to single expressions from Πe (for unknown expressions) or subsets from Πp

(for unknown predicates).

5.4.3 Directed path exploration using solution maps

We now describe a technique for exploring paths relevant to a particular solution map and
directed towards refining the space of solutions for P̂rog. We first introduce the notion of spurious
and valid solution maps:

Definition 5.3 (Spurious and valid solution maps) We call a solution map S spurious if

there exists a path t ∈ paths(P̂rog) whose path constraint τ and version map V are such that
[[τ]]S 6⇒ specV . If no such path constraint exists then we call the solution valid.

In conjunction with Lemma 5.1, this definition implies that for spurious solution maps S there
exist concrete input values for which the execution of [[P̂rog]]S violates the specification while for
valid candidates no such inputs exist.

Note that computing whether a solution S is spurious or valid is in general intractable3 using
symbolic execution, as that may require exploring an infinite number of paths. In the absence of
this knowledge suppose we still wanted to explore a new path t (in P̂rog) that would be “relevant”
to S, i.e. if S were valid then the constraints generated for t should not exclude S from the space,
while if S were spurious then the constraints generated for t should be likely to eliminate S from
the space. To describe such relevant paths we need the notion of infeasibility of paths with respect
to S:

Definition 5.4 ((In)feasibility with respect to a solution map) A path is feasible with re-
spect to a solution map S if [[τ]]S 6⇒ false, where τ is the path constraint corresponding to the
path. A path is infeasible with respect to the S otherwise.

Now note that a path t′ that is infeasible with respect to S will not be relevant to S. If t′ is
infeasible with respect to S then [[τ]]S ⇒ false and the safety constraint corresponding to t′ (of
the form ∀X : τ ⇒ specV) is trivially satisfied by S because its antecedent evaluates to false.
Therefore adding the safety constraint corresponding to t′ will never eliminate S (and the class of
solutions it represents) from the solution space.

Therefore, our objective is to add new paths such that each solution map satisfies as many
path constraints non-trivially as possible. A plausible but impractical approach to generating
feasible paths is to randomly add paths from paths(P̂rog). Consider a program and inverse with
a nested loop each. Even if we were to consider only 3 unrollings, then for each unrolling of the
outer loop the inner loop can be unrolled 0 . . 3 times, resulting in 40 + 41 + 42 + 43 = 85 possible
paths in each of the known and unknown programs and consequently 7225 paths through both.
We have found that attempts to refine the space using random exploration does not terminate
even for the simplest programs.

Instead our directed path exploration, parametrized by S, constructs paths feasible with
respect to S. By precluding infeasibility, we force the candidate to satisfy the constraint generated
from this new path non-trivially. Consequently, if S is spurious, it is likely that it will fail to satisfy

3Note that here we differ from previous techniques that use formal verifiers [246], as they assume that a verifier
exists that classifies solution maps as spurious or valid. They use the counterexample to spurious solution maps to
refine the space, or the proof for the valid solutions to terminate. On the other hand, we do not have that luxury.

117

the safety constraint for the new path. If on the other hand, the solution is valid then it will satisfy
the new safety and termination constraints by definition (and do so non-trivially). Fortunately,
we have the machinery already in place to do this. Instead of running the symbolic executor with
an empty solution map, as in Section 5.4.1, we instead run it with the solution map S. This
changes the behavior of symbolic execution on assumes with unknown predicates ρ if ρ ∈ dom(S).
In the rule for assume in Figure 5.3, instead of checking τ ∧ ρV 6⇒ false the executor will now
check τ ∧ ρ̄V 6⇒ false, where ρ̄ = S[ρ]. Notice that it is important that we assert termination
constraints before attempting to run symbolic execution using S. If termination is not asserted
and S corresponds to an infinite loop, then the parametrized symbolic execution will never reach
the end of the program. The following theorem holds for parametrized symbolic execution:

Theorem 5.2 For any path constraint τ that is the output of symbolic execution with solution
map S, the path corresponding to τ is feasible with respect to S.

Proof: The proof is identical to the proof for Theorem 5.1, except that now the premise for
Rule Asm is instantiated with the S[p] before checking its conjunction for infeasibility. Notice
that the argument for Rule Assn does not need modification, as the equality predicate cannot
generate infeasibility irrespective of whether the expression is known or unknown.

�

Our path generation strategy, for the case of valid and spurious solutions, affects the solu-
tions space as follows:

Paths feasible with respect to valid solutions Let S be a valid solution map and let t be a path
that satisfies Theorem 5.2 with with respect to S. Then the constraints from t will not eliminate
S because S, being valid, by definition satisfies the specification on all paths. On the other hand,
the constraints may eliminate other spurious solutions.

Paths feasible with respect to spurious solutions A path that satisfies Theorem 5.2, is only guar-
anteed to be feasible with respect to S, which may be spurious. It is important to assert the
corresponding constraint because it is likely to eliminate the spurious S (and other solutions that
are similar to it) despite the fact that the path may be infeasible for every other valid solution
S′. This is in contrast to a traditional symbolic executor where infeasible paths only add over-
head. With unknown expressions and predicates, paths that are feasible with respect to spurious
solutions (but may be infeasible with respect to valid solutions) yield constraints that are likely to
eliminate the spurious solutions and are therefore useful.

5.4.4 PINS: Path-based Inductive Synthesis

Figure 5.4 shows our iterative synthesis semi-algorithm. The algorithm bootstraps using the
termination constraint and then iteratively adds safety constraints, using paths generated through
directed exploration, until the set of candidate solutions stabilizes.

The symbolic executor explores some path t and generates the corresponding path constraint
pc, which we log in the set of explored paths pcset. We maintain a constraint cnstr that we initialize
to the termination constraint and then in each iteration add an additional safety constraint from
safepath. In each iteration we query the SAT solver for solutions to the current constraint cnstr
under the predicate and expression sets mined earlier and ask for m solution maps. We pick
one of those solutions using pickOne, which returns the solution with the fewest feasible paths
with respect to it. pickOne ensures that we preferentially add paths for solutions that currently
have fewer feasible paths. This process prunes the space by ensuring that only those solutions
remain that satisfy the specification over many paths. Typically, we have found that the algorithm
converges to the valid solutions in a few iterations.

The algorithm terminates when stabilized holds. The choice of this function depends on
the guarantees required from PINS, and we omit a precise definition here to permit flexibility. In

118

Input: Partial program prog, Specification spec,
Predicate set Πp, Expression set Πe,
Number of solutions from SAT solver m.

Output: Solution map S or “No Solution”.
begin

pc := SymEx∅∅(true, Vinit, t); with t ∈ paths(prog);
pcset := {pc};
cnstr := terminate(prog);
while (∗) do

cnstr := cnstr ∧ safepath(pc, spec);
sols := satReduceAndSolve(cnstr,Πp,Πe,m);
if sols = ∅ then

return “No Solution”; /* Refine abstraction */

if stabilized(sols) then
return sols[0];

pc := SymExSpcset(true, Vinit, t); where S = pickOne(sols) and t∈paths(prog);
pcset := pcset ∪ {pc};

end

Figure 5.4: The PINS semi-algorithm.

our implementation, we terminate when only one solution remains. Alternatively, we can imagine
terminating whenever the set of candidates has fewer than m elements and then use other, more
lightweight mechanisms (e.g., concrete testing) to eliminate any remaining spurious solutions.

Notice that the constraints generated are implicitly existentially quantified at the outermost
level as ∃E,K, {ηl}l. The constraint solving technique assigns appropriate known values to these
from the given expression and predicate sets (with the candidates for ranking functions constructed
from the predicates).

Process of using PINS We now describe the result of running PINS when a solution exists and
when it does not exist for the given partial program prog, predicate Πp, and expression Πe sets. If
a solution does not exist, then PINS eventually finds a path whose path constraint is unsatisfiable,
and hence the solution set is empty. (Typically, the user is then asked to modify the input, as
we discuss in Section 5.5.) However, if a solution exists, then PINS keeps adding paths whose
path constraints ensure that only solutions that meet the specification remain. In such cases it
degenerates to a symbolic execution-based verifier, continuously attempting to find paths to narrow
the search space further, but failing to eliminate any of the valid solutions, until terminated by
the stabilized function.

The following theorem formalizes the fact that valid solutions are never eliminated from the
space of solutions by PINS.

Theorem 5.3 If there exist valid solutions {Si}i=1..n (over Πe and Πp) that instantiate prog such
that each instantiation is a terminating program (with a linear termination argument), and meets
the specification spec, then each iteration of the algorithm maintains the invariant that each Si is
one of the satisfying solutions to cnstr. Lets say there are K satisfying solutions to cnstr. Then
each Si is in sols with probability min(m/K, 1), if the sat solver is unbiased in picking a satisfying
solution.

Proof: We first prove that each of the valid solutions is a satisfying solution to cnstr at entry
to the loop in the algorithm, and then prove that it remains a solution in each iteration.

We note that since each solution Si has a linear termination argument, it satisfies the constraints
imposed by terminate(prog) by Definition 5.2. Therefore, on entry to the loop, each Si is a
solution to cnstr.

119

To prove that each Si remains a solution to cnstr, we need to show that the conjunct pc added in
each iteration is satisfied by Si. There are two cases depending on whether the path generated
through symbolic execution is feasible with respect to the given Si or not:

• Path feasible: If the path is feasible then by Definition 5.3 we know that the corresponding
path constraint τ has to satisfy spec, i.e., τ ⇒ specV . Therefore the constraint added
(Eq. 5.6) is satisfied by Si.

• Path infeasible: If the path is infeasible then the corresponding path constraint τ for the
instantiation with Si implies false. Then the constraint added (Eq. 5.6) has an antecedent
that is false, and therefore the constraint is trivially satisfied.

Now that we have proved that each valid solution is a satisfying solution to cnstr, we need to
evaluate the probability of it being selected to be in sols by an unbiased solver. We call a solver
unbiased if it outputs any of the satisfying solutions to its input with uniform probability. In
that case, if K are the satisfying solutions to pick from, and we pick m satisfying solutions then
each individual valid solution has a probability of m/K of being picked. But of course this is
only under the assumption that m ≤ K. If m > K then each valid solution is picked with
certainty therefore the overall probability of being picked is min(m/K, 1).

�

The following lemma is a straightforward application of the above theorem and justifies why
it is reasonable to terminate when the set of enumerated solutions is small in size.

Lemma 5.2 If stabilized(sols) only returns true when |sols| < m and there exist valid solution
{Si}i=1..n, then PINS returns a valid solution with probability min(n/|sols|, 1).

Proof: By the definition of satReduceAndSolve we know that if |sols| < m then all the
satisfying solutions to cnstr have been enumerated and they are less than m in number. In
Theorem 5.3 the number of satisfying solutions are K and here we know that K < m. Therefore
Theorem 5.3 states that each of the n satisfying solutions are in sols with probability 1. Con-
sequently, the probability of picking a valid solution (of which there are n) out of the solutions
in sols is at least n/|sols|.

�

From the above lemma, the following is a direct corollary for the degenerate case when the
algorithm is able to reduce the solution space down to a single solution.

Corollary 5.1 If |sols| = 1 and there exists at least one valid solution, then PINS returns a valid
solution.

5.5 Synthesizing inverses using PINS

In this section we describe our approach to mining the template (Section 5.5.1) and our sup-
port for axioms (Sections 5.5.2) and recursion (Section 5.5.3) We then describe how we instantiate
PINS for sequential and parallel composition to handle inversion (Section 5.5.4) and client-server
synthesis (Section 5.5.5), respectively.

5.5.1 Mining the flowgraph, predicates and expressions

In this section, we describe how to mine the flowgraph template, expression and predicate
sets used in the PINS algorithm (Figure 5.4). It is most convenient to consider Prog written in a
language that makes the structured control flow explicit:

K ::= x := ε̄ | aF | K;K
F ::= if(ρ̄) K else K | while(ρ̄) K | main K
a ::= ↓ | ↑ | ×

120

The language consists of sequences of known statements K and structured control flow elements
F that the user annotates with tags a. The annotation is either a forward ↓, a backwards ↑, or a
deletion × tag. Tags indicate the direction of statements in the inverse P−1 with respect to the
original program.

Note that, ignoring the tags a, a program in the languageK can be translated to the language
stmt in a standard manner. To translate if(ρ̄) K1 K2, we output a non-deterministic branch with
assume(ρ̄) followed by the translation for K1 and assume(¬ρ̄) followed by the translation for K2.
To translate while(ρ̄) K1, we output a non-deterministic branch with assume(ρ̄) followed by the
translation for K1 and going back to the loop on one branch, and assume(¬ρ̄) on the other. The
only non-standard construct is main, which we use to indicate the entry point of the program. The
presence of main allows us to associate a tag with the outermost set of statements.

By allowing the user to specify the ↓, ↑, or × tag, we provide the user with the flexibility
to influence the template mining, while by limiting it to one tag at the head of each control flow
structure, we minimize the annotation burden.

Given a tagged program Prog in the language K, we define functions fg, pred, and expr

that mine using structural induction the flowgraph, predicate set, and expression set for the inverse
P−1. The key idea behind fg is to translate an assignment x := ε̄ to either x := ε0 (if the tag
is ↓) or to 〈v1, v2 . . := ε1, ε2 . .〉 (if the tag ↑), where v1, v2 . . ∈ vars(ε̄) and εi are fresh unknown
expression symbols. pred recursively extracts predicate guards from the original program and
also generates predicates from some commonly occurring patterns in program-inverse pairs. expr

also recursively extracts expressions from the original program, but applies a heuristic expression
inverter, converting − to + etc., when the tag is ↑ and returns the expressions as is when the tag
is ↓.

The functions fg, pred, and expr are just the corresponding ones shown in Figure 5.5 with
a postprocessing step that renames variables so that the variables of Prog do not interfere with
the variables of P−1. The renaming is assumed to be consistent, e.g., v is always renamed to to
v′. This is required because our technique for synthesis composes the two programs together, and
we do not want extraneous values at the end of the first program to flow into the second program.
Renaming ensures that this does not happen.

5.5.2 Axiomatization for handling Abstract Data Types

A major concern for modular synthesis is proper handling of abstract data types (ADTs).
A key feature of our symbolic executor, and consequently of PINS, is its extensibility by means of
axioms that is borrows from the use of VS3

AX (which builds on top of VS3
PA) from Chapter 4. For an

ADT, we assert quantified axioms about its interface functions in the SMT solver. For instance,
consider the String ADT. Suppose a program uses its interface functions append, strlen, and
empty. Then, among others, we assert the following in the SMT solver:

strlen(empty()) = 0
∀x, y: strlen(append(x, y)) = strlen(x) + strlen(y)
∀x, c: strlen(append(x,‘c’)) = strlen(x) + 1

We employ this facility to reason about operations that are difficult for SMT solvers. For instance,
we assert an axiom ∀x 6= 0 : x× (1/x) = 1 because reasoning about multiplication and division in
general is hard for SMT solvers. Additionally, we will use this in the next section to enforce that for
communicating programs composed in parallel, each message send is matched with a corresponding
receive.

5.5.3 Recursion

To handle recursive calls, we augment our language with the statement ~vret := rec(~vargs)
4.

Additionally, the symbolic executor now maintains a stack of version maps ~V and a current stack
depth i. The top of the stack ~V [i] contains the version map for the current stack depth. Also,

121

fga(x := ε̄) =

{
{x := ε} a =↓
〈v1, v2 . .〉 := 〈ε1, ε2, . .〉∀vi ∈ vars(ε̄) a =↑

fga(K1;K2) =

{
fga(K1); fga(K2) a =↓
fga(K2); fga(K1) a =↑

fg(aif(ρ̄) K1 else K2) =

{
if(ρ) fga(K1) else fga(K2) a 6= ×
skip otherwise

fg(awhile(ρ̄) K1) =

while(ρ) fga(K1) a 6= ×
fga
′
(K1) otherwise (a′: annotation

on the enclosing block)

fg(amain K1) = main fga(K1) a 6= ×

preds(x := ε̄) = ∅
preds(K1;K2) = preds(K1) ∪ preds(K2)

preds(aif(ρ̄) K1 else K2) =

{ρ̄} ∪ preds(K1) a 6= ×
∪ preds(K2)

∅ otherwise

preds(awhile(ρ̄) K1) =

{
{ρ̄} ∪ preds(K1) a 6= ×
∅ otherwise

preds(amain K1) =

{
preds(K1) a 6= ×
∅ otherwise

expr↓(x := ε̄) = {ε̄}
expr↑(x := ε̄) = {invop(ε̄)}
expra(K1;K2) = expra(K1) ∪ expra(K2) a 6= ×

expr(aif(ρ̄) K1 else K2) =

{
expra(K1) ∪ expra(K2) a 6= ×
∅ otherwise

expr(awhile(ρ̄) K1) =

{
expra(K1) a 6= ×
∅ otherwise

expr(amain K1) =

{
expra(K1) a 6= ×
∅ otherwise

invop(x) = x
invop(f) = g where (f, g), (g, f) ∈ {(+,−), (∗, /)}

invop(f · g) = invop(g) · invop(f)
invop(upd(A, i, fn(sel(B, j)))) = upd(B, j, invop(fn)(sel(A, i)))

Figure 5.5: Automatically mining flowgraphs, predicate and expression sets.

~Vr = ~V [i+ 1 7→ Vinit(i+ 1)]

τentry = (~vin
(i+1,0) = ~vargs

~V [i]) SymExS{τi}(τ ∧ τentry, ~Vr, i+ 1, Prog) = τ ′, ~V ′

~V ′′ = ~V [i][v 7→ ~V [i][v] + 1] ∀v ∈ ~vret τexit = (~vret
~V ′′[i] = ~vout

~V ′[i+1])

SymExS{τi}(τ,
~V , i, ~vret := rec(~vargs)) = τ ′ ∧ τexit, ~V ′′

Figure 5.6: Handling recursion in PINS. Vinit(k) indicates the initial version map for stack depth k
and is maps all variables in Prog to the version number (k, 0). Also, we use the notation (k, j) + 1
to denote (k, j + 1).

122

Input: Original program Prog,
Number of solutions from SAT solver m.

Output: Inverted Program P−1 or “No Solution”.
begin

fg := fg(Prog); prog := Prog ◦ fg; Πp := preds(Prog); Πe := exprs(Prog);
sol := PINS(prog, id,Πp,Πe,m) ;
if sol = “No Solution” then

return “No Solution” /* Modify fg/Πp/Πe */

return [[fg]]sol;
end

Figure 5.7: Using PINS to invert programs or to generate client-servers. The compose operator
◦ is either ; (sequential composition for inversion) or || (parallel composition for client-
servers).

variables now have versions that are tuples (d, i), where d denotes the stack depth and i denotes
the version number at that depth.

We add a symbolic execution rule, shown in Figure 5.6, to interpret the recursive call. The
rule, for a recursive call at depth i, pushes on the stack an initial version map Vinit(i + 1). The
initial version map Vinit(i + 1) is a map that assignes all variables to default initial version 0 at
stack depth i+ 1. It then runs the symbolic executor over the program Prog corresponding to the
recursion, with an initial trace τ ∧ τentry, the new stack of version maps, and the stack depth, to

yield the output path constraint τ ′. (We ignore the stack of version maps ~V ′ that results after
the recursion bottoms out because the local variables go out of scope then.) τentry and τexit take
care of the passing the function arguments and return values by asserting appropriate equalities
between variables (arguments and formal parameters; return values and assigned variables) at
different stack depths. Lastly, because they are assigned to, the versions of variables getting the
return values (at depth i) are incremented.

An almost identical rule suffices for handling arbitrary procedure calls. While straight-
forward, we have not yet experimented with arbitrary interprocedural synthesis.

5.5.4 Sequential composition: Synthesizing Inverses

A simple trick of sequentially composing a program with a template of its inverse allows us
to use PINS to synthesize inverses.

Let ~vin and ~vout denote the vector of input and output variables, respectively, of the given
program Prog. Then the sequential composition (Prog ; P̂rog) is interpreted as executing Prog

first with input values for ~vin and producing values for ~vout, followed by the execution of P̂rog,
which takes values for ~vout as input and in turn produces values for ~vin.

Definition 5.5 (Synthesizing Inverses) Given an known (terminating) program Prog, the in-

version task is to find a solution map S that instantiates a template P̂rog such that the following
Hoare triple, with id denoting the identity transform, is valid:

{true} Prog ; [[P̂rog]]S {id} (5.7)

The algorithm in Figure 5.7 shows our inversion algorithm using PINS when the programs
are sequentially composed. We mine from the given program Prog a flowgraph template fg(Prog)
and predicate and expression sets preds(Prog) and exprs(Prog) (Section 5.5.1). We compose the
flowgraph template with Prog to get the program prog over which we run PINS.

4This construct does not allow mutually recursive functions, but it can trivially be extended.

123

5.5.5 Parallel composition: Synthesizing Network Programs

For us, programs composed in parallel run simultaneously while only interacting through
message passing. Parallel composition (Prog || P̂rog) indicates that Prog and P̂rog together take
input values for ~vin and execute simultaneously, interacting using messaging primitives to produce
values for ~vout. We augment our symbolic executor in two ways to handle parallel composition.
First, under the assumption that the composed programs do not share common variables, we define
paths(Prog1 || Prog2) as {t1; t2 | t1 ∈ paths(Prog1), t2 ∈ paths(t2)}. Notice that in contrast to
the traditional approach of interleaving the executions of programs, we concatenate the path
constraints, and we leave it up to the axiomatization of message passing primitives to generate
appropriate equalities that connect the two path constraints. This is sound because we assume that
the programs do not share variables. Second, we add the premise τ∧(xv = eV) 6⇒ false to the rule
for handling assignments. In the case of parallel composition, in addition to assumptions leading
to infeasibility, assignments may do so too when messages are received that result in additional
facts being generated.

Definition 5.6 (Synthesizing Client-Servers) Given an known (terminating) network program
Prog, the synthesis task for client-servers is to find a solution map S that instantiates a template
P̂rog such that the following Hoare triple, with spec denoting the functionality of the combined
client-server pair, is valid:

{true} Prog || [[P̂rog]]S {spec} (5.8)

The algorithm in Figure 5.7 shows our client-server synthesis algorithm using PINS when the
programs are composed in parallel. As before, we mine from the given program Prog a flowgraph
template fg(Prog) and predicate and expression sets preds(Prog) and exprs(Prog) (Section 5.5.1).
We compose the flowgraph template with Prog to get the program prog over which we run PINS.

Logical clocks for ensuring in-order communication Our approach to modeling communication
under parallel composition is inspired by the notion of logical clocks by Lamport [181]. Lamport’s
clocks ensure that for two distributed processes A and B with two event a and b such that a
“happens-before”, notated as a → b, it is the case that CA(a) < CB(b). If this consistency
constraint is maintained then a total ordering can be imposed on the events of the system.

We ensure such distributed consistency by maintaining logical clocks at each node and
updating them, as in Lamport’s proposal. For each communicating entity, we associate a clock
variable clk. This logical clock is incremented every time the entity sends or receives a message.
The increment is encoded as part of the axiom that matches up a send with a receive, and which
may cause a buffer equality to be generated, as we show later. (The variable clk is a proof term,
and no program statement exists that can manually update the clock.) At the end of each path,
in addition to asserting the specification, we now additionally assert that the logical clocks of all
entities are equal—ensuring that only in-order communication is allowed and that each send has
a corresponding receive and vice versa.

Axioms for buffer equality on message sends and receives We assert buffer equality axioms that
generate an equality between the message buffer sent and the buffer received. This allows the
system to synthesize statements that call the send and receive functions without worrying about
their communicating semantics, as this reasoning gets integrated into the SMT solver through the
axioms.

Example 5.1 Consider programs that use uninterpreted functions send and recv for communica-
tion. An axiom that relates send and recv could be the following (essentially providing an abstract
semantics for the communication):

∀
x, y, y′

clk1, clk
′
1,

clk2, clk
′
2

:

(
clk1 = clk2∧

(y′, clk′1) = send(x, clk1)∧
(y, clk′2) = recv(clk2)

)
⇒

(
clk′1 = clk1 + 1∧
clk′2 = clk2 + 1∧

x = y

)

124

Consider a known client program

in(v); (v, clkc) := send(v, clkc); (v′, clkc) := recv(clkc);

with postcondition v′ = v + 1. Suppose we wish to synthesize the corresponding (echo-increment)
server with the template (n, clks) := ε1; (n′, clks) := ε2. (We generate such templates by augment-
ing each assignment in the original mined template n := ε′1;n′ := ε′2 to simultaneously update the
clock variable as well.)

The logical clock preconditions clks = clkc = 0 and postcondition clks = clkc are asserted
automatically by the system at the start and end of each path, respectively. Then, given the above
buffer equality axiom, the only solution that satisfies the clock postcondition and v′ = v+ 1 for the
composed program is {ε1 7→ recv(clks), ε2 7→ send(n+ 1, clks)}.

Notice how the use of logical clocks and axioms for buffer equality allows us to seamlessly
deal with the problem of synthesis. Logical clocks ensure that no out-of-order communication is
possible (soundness) and ensuring buffer equality on message transfers allows us to reason across the
communicating entities (completeness). By encoding communication this way we can synthesize
communicating programs using our algorithm from before.

5.6 Experiments

We implemented a symbolic executor based directly on rules in Figure 5.3 and 5.6, and used
it to implement the PINS algorithm (Figure 5.4).

Number of solutions (m) and prioritizing them (pickOne) PINS (Figure 5.4) is parametrized by
the number of solutions m and pickOne. We use the SAT solver to enumerate m solutions in each
step. The objective is to get a fair sampling of solutions on which we apply our prioritization
heuristic, while at the same time not spending too much time in the solver. The extremes m = 1
and m =∞ are therefore undesirable: m = 1 does not allow us to compare solutions, while m =∞
wastes too much time in the SAT solver. In our experiments we chose m = 10, which worked well.

Second, we prioritize the m solutions according to a heuristic pickOne. Our approach is
again based on the observation that spurious solutions typically satisfy the safety and termination
constraints by ensuring (through suitable assignments of the unknowns) that a large fractions of
the paths are infeasible. Our implemented pickOne first counts the number of infeasible paths for
each solution map S:

infeasible(S) = |{τ | τ, V ∈ pcset ∧ [[τ]]S ⇒ false}|

and then picks a solution map S with a high infeasible(S) value. We experimentally validated
this heuristic for pickOne against another that randomly picks any solution from the m available.
In our experiments random selection yields runtimes that are 20% more than with infeasible,
and therefore we use infeasible. We did observe that random selection is better in the initial
few iterations but then takes longer to identify the paths that eliminate the last few solutions, as
expected, and therefore takes more time overall. This suggests that the ideal strategy would be a
hybrid that starts with random selection and then switches to the infeasible metric when the
number of solutions is small.

The process of synthesis using PINS The user annotates the conditionals, loops, and main entry
point, with the tags appropriately as described in Section 5.5.1. From the annotated program,
we extract the flowgraph, predicate, and expression sets, using the functions shown in Figure 5.5.
Currently, we run the extraction functions by hand, but they are trivial to automate. When the
synthesis attempt fails for the initial mined values, we modify them suitably using the paths that
PINS explores. We will report the number of such changes that we had to do for our experiments
later. Our path-based approach is very helpful in identifying the cause of imprecision/inaccuracy

125

(a) LZ77 Compressor

↓ in(A,n)
assume(n ≥ 0);
i:=0; k:=0;
↓ while (i < n)

p:=0;
× j:=0; c:=0;
× while (j < i)

r:=0;
↑ while (i+r < n-1

∧ A[j+r]=A[i+r])
r++;

× if (c < r)
× c:=r; p:=i-j;

× j++;
× O1[k]:=p; O2[k]:=c;
× O3[k]:=A[i+ c];
i:=i+ c; k++;

out(O1, O2, O3, k)

(b) Mined Inverse Template

〈i′, k′ := ε1, ε2〉
while (ρ1)
〈r′, p′ := ε3, ε4〉
while (ρ1)
〈r′ := ε5〉

〈k′, i′ := ε6, ε7, ε8〉
out(A′, i′)

(c) Modified Inverse Template

〈i′, k′ := ε1, ε2〉
while (ρ1)
〈r′, p′ := ε3, ε4〉
while (ρ1)
〈A′, i′, r′ := ε5, ε6, ε7〉

〈A′, k′, i′ := ε8, ε9, ε10〉
out(A′, i′)

Figure 5.8: (a) The original LZ77 compressor, (b) The mined decompressor flowgraph, and (c)
The user modified flowgraph.

in the predicates, expressions, and flowgraph template. On the one hand, if a valid inverse does
not exist in our template, then PINS generates paths that eliminate all solutions. In this case,
we examine the paths and change either the predicates, expressions, or flowgraph. This is very
similar to abstraction refinement in CEGAR [149], and therefore we expect the process can be
made completely automatic. On the other hand, if a valid inverse does exist in our template, then
PINS eliminates all but the valid ones. At that point, we manually inspect each synthesized inverse
to confirm that it indeed is valid.

5.6.1 Case Study: Inverting the LZ77 Compressor

We now detail the use of PINS to synthesize the decompressor for the LZ77 compressor,
shown in Figure 5.8(a).

First, we decide on a translation of variables from the original program to variables in the
inverse. For the case of LZ77, we decide on the following trivial translation: i → i′, k → k′, r →
r′, p→ p′, A→ A′ while the rest of the variables, O1..3, n, c, j have not counterparts. This is easily
guessed based on minimal understanding of the LZ77 compressor. n is the input size of the original
array, O1..3 hold the compressed output, and so these naturally have no corresponding variables
in the inverse. c, j are variables that are used for searches for the optimal location in the original
stream and since the inverse will do no such search, they also do not have corresponding variables
in the inverse.

Next, we decide the tags, ↓, ↑, or ×, that need to label fragments of the original program.
Statements that refer to variables with no corresponding variables in the inverse are obvious can-
didates for the × tag. In fact, we add a × tag to every such statement except for one (i:=i + c,
which we guess has to remain.)

Using these tags, we use the mining functions to extract a template flowgraph, expressions
and predicates:

• Flowgraph: Applying the flowgraph mining function fg yields the flowgraph template shown
in Figure 5.8(b).

• Expressions: Applying the expression mining function exprs, we get the candidate expres-
sions 0, i+ c, k+ 1, r−1, which translate to 0, i′+ 1, k′+ 1, r′−1. Since c does not translate,
we replace it with a guess of 1.

126

(a) LZ77 Inverse Template

i′:=0; k′:=0;
while (ρ1)
r′:=0;
〈p′ :=ε1〉
while (ρ2)
〈A′, i′, r′ :=ε2, ε3, ε4〉

〈A′, k′, i′ :=ε5, ε6, ε7〉
out(A′, i′)

(b) Expression Set

i′ + 1, k′ + 1, r′ + 1,
O1[k′],
upd(A′, i′, O3[k′]),
upd(A′, i′, A′[i′−p′])

(c) Predicate Set

k′ < k, r′ < O2[k′]

(d) LZ77 Decompressor

i′:=0; k′:=0;
while (k′ < k)

r′:=0;
p′:=O1[k′];
while (r′ < O2[k′])

A′[i′]:=A′[i′−p′];
i′++; r′++;

A′[i′]:=O3[k′];
k′++; i′++;

out(A′, i′)

Figure 5.9: (a,b,c) Final flowgraph template, Πe, and Πp for LZ77, used as input to PINS. Size of
the space here is approximately 221, i.e., (67) ∗ (2 ∗ 22), the first term corresponding to the space
of expressions, and the second term the space of predicates, which can be populated with subsets.
(d) Synthesized LZ77 decompressor.

• Predicates: Applying the predicate mining function preds, we get candidate predicates, of
which none translate as they contain at least one variable with no corresponding translation.
In our experience with inversion a predicate comparing the length of the translated and
original data, k′ < k, is useful and so is added by default.

Running PINS using these inputs terminates and finds paths that eliminate all possible can-
didates. We then add other potential candidates to the mined sets. The iterations of PINS at this
point serve as good indicators of which terms to add. Each iteration adds a path, which corresponds
to some (symbolic) input-output for the original program. Examining the path tells the user the
expressions or predicates (for that particular input instance) that are missing. Thus, failing runs of
PINS are themselves debugging tools for synthesis, which is unlike previous approaches [250, 246].
This debugging process is similar to angelic programming [39], except that the traces generated are
already symbolic and the user does not need to perform any generalizations. In our experience, we
have found it easy to generalize from these instances and add the right expressions and predicates,
which for LZ77 are as below. (LZ77 is one of the most complicated benchmarks we ran on, and
changes to the rest of the benchmarks we in most cases simpler.)

• Flowgraph (2 changes): We notice that in this mined flowgraph the array that is expected
to hold the decompressed output (A′) is never assigned to. Consequently, we tweak the
flowgraph and add assignments (to A′) wherever in Figure 5.8(a) the input array A was read.
This happens in two locations. First, in the condition of the loop guard, where the variables
read are A, i, r, n, j of which only A, i, r are translated to variables A′, i′, r′ in the inverse.
Second, close to the end, where variables read are A, i, k, c, p of which only A, i, k translate
to A′, i′, k′ in the inverse. These tweaks result in the template flowgraph in Figure 5.8(c).

• Expressions (4 changes): Since the arrays containing the compressed data are not in the
expression set, we examine the PINS paths which direct us to add O1[k′], upd(A′, i′, O3[k′]),
and upd(A′, i′, A′[i′ − p′]) to the expressions. Also, r′ − 1 needs to be changed to r′ + 1.

• Predicates (1 change): One of the paths from PINS directs us to add r′ < O2[k′] to the set
of predicates.

Running PINS with these inputs does not terminate, which indicates that the solution space
contains the right inverse but is too large for efficient pruning. Hence we make one last guess and
eliminate the expression 0 from the expression set and instantiate three statements i′ := 0, k′ := 0,
and r′ := 0 at the beginning of the program (3 changes). Thereafter, using the input shown in

127

Fig. 5.9(a,b,c), PINS is able to prune the solution space to two solutions in 6 iterations5, and the
resulting inverse is shown in Fig. 5.9(d).

5.6.2 Benchmarks

We synthesized programs in two categories: program inversion, illustrating our technique
for sequential composition, and client-server synthesis, illustrating our technique for parallel com-
position.

5.6.2.1 Program Inversion: Sequential Composition

To demonstrate the feasibility of synthesizing programs that are sequentially composed, we
consider three different synthesis tasks: decoders for compression programs, finding the inverses
for format conversion programs, and finding the inverses for arithmetic programs.

For all the benchmarks in these domains the specification spec is identity, i.e., for all
variables v with primitive types we assert v = v′, and for all variables A with aggregate types (e.g.,
arrays, strings) with bounds n we assert n = n′ ∧ ∀0 ≤ i < n ⇒ A[i] = A′[i], where the primed
variables are those at the end of the execution.

Compressors Our first compression benchmark is run length encoding, which scans the input
for sequences of consecutive characters and outputs characters and their counts (a more complex
variant of Figure 5.1(a)). The decoder, which we synthesize, expands each (character, count)
pair into the original sequence. Though simple, this example illustrates the need to provide the
flexibility of annotating control structures with directions. Of the three structures in the program
(the entry point and two loops that are nested), the outer loop is annotated as ↓ to allow processing
the stream in the direction it was encoded.

Our second compression benchmark is the LZ77 encoding algorithm [275], which is the basis
of the popular Deflate algorithm used in gzip, zip, and PNG images. LZ77 compresses data by
outputting pointers to identical sequences seen in the past. Therefore, an entry in the output may
indicate “copy 5 characters starting from 9 characters behind this point,” or more interestingly
“copy 7 characters starting from 1 character behind this point.” The algorithm takes care of
bootstrapping the process by outputting the next unmatched character along with each (pointer,
count) pair. The decoder, which we synthesize, reconstructs the original stream from the (pointer,
count) pairs and the characters in the encoded stream. Again, we annotated the outer loop with a
↓ tag, and one of the two inner loops with a × tag. This was easy to guess since the loop searches
for the best match in the input stream, which the decoder would not need to do.

Our last compression benchmark in this category is the Lempel-Ziv-Welch (LZW) encod-
ing [268], which is the basis of GIF compression. The algorithm builds an online dictionary using
the input data and outputs dictionary indices. The bootstrapping process implicit in the encoder
leads to a corner case when the encoder adds a dictionary entry and then immediately outputs its
index [268]. The decoder builds an dictionary identical to what the encoder constructed earlier
to reconstruct the original stream. The decoder is tricky because the corner case that requires
it to construct the next dictionary entry and the output string simultaneously. Our technique
automatically synthesizes the decoder with this corner case after we annotate some of the inner
control structures with ×. As in LZ77, the inner loop searches for the longest dictionary sequence,
which the decoder need not do, so guessing the × was easy.

Formatters Our first formatter benchmark is a program for Base64 MIME encoding that converts
its binary input to base 64 encoding with ASCII characters that are both common and printable.
We synthesize the inverse program that converts the ASCII printable characters to the original

5Note that for this input space, it would take 62 hours to exhaustively try each decompression candidate, even
if just testing only a few concrete inputs. The time will be dominated by the compilation step (0.1 seconds.)
Additionally, random testing does not even provide the guarantees that our symbolic approach gives. PINS is able
to find these solutions in 1810 seconds, despite our unoptimized implementation of the symbolic executor.

128

binary stream. The encoder has a non-trivial control structure with an outer loop containing a
sequence of two inner loops. We synthesize the inverse using a ↓ tag on each loop.

Our second formatter benchmark is a program for UUEncode binary-to-text encoding that
outputs four printable characters for every three bytes of input and adds a header and footer to
the output. We synthesize the inverse program to convert the printable text back to the original
binary stream.

Our third formatter benchmark wraps data into a variable length packet data format by
adding a preamble (the length of the field) to the data bytes for the field. We synthesize the inverse
program, which reads the length and appropriate bytes of the data fields to reconstruct the input
data.

Our fourth formatter benchmark is a recursive function that takes a description of objects
and writes out their XML representation, e.g., for serialization. We synthesize the inverse program,
which reads the XML representation and reconstructs the object.

Arithmetic Our first arithmetic benchmark is a simple iterative computation of
∑
i that in the

ith iteration adds i to the sum. This is another program where it may not be feasible to derive the
inverse just by reading the program backwards. In this case, reading backwards one would need
to solve for n from n(n+ 1)/2, i.e., solve a quadratic, which is hard to automate. Using a ↓ tag for
the loop, our tool automatically synthesized the inverse that in the ith iteration subtracts i from
the sum until it reaches 0.

Our next three arithmetic benchmarks are vector manipulation programs for shifting, scal-
ing, and rotating a set of points on the Euclidean plane. These primitives are used frequently in
graphics programming and image manipulation. For each operation we synthesize the correspond-
ing inverse.

Our fifth arithmetic benchmark is Dijkstra’s permutation program from his original note on
program inversion [90]. He considered a program that, given a permutation π, computes for the
ith element of π the number of elements between 0 . . i that are less that π(i). The inverse program
computes the permutation from an array of these counts. Dijkstra manually derived it from the
original program, while we automatically synthesize the inverse.

Our last arithmetic benchmark is a program for in-place computation of the LU-decomposition
of a matrix using the Doolittle algorithm [224]. The inverse, which has been manually derived be-
fore [55] and which we synthesize automatically, is a program that multiplies the lower triangular
and upper triangular matrices in-place.

5.6.2.2 Client-Server: Parallel Composition

To demonstrate the feasibility of synthesizing programs that are composed in parallel, we
synthesize the client functions from the corresponding functions in a Trivial File Transport Protocol
(TFTP) server. We use an open source implementation of a TFTP server as the starting point.
The send functions have retry mechanisms to account for network errors with no corresponding
code when receiving and therefore we abstract them out into macros.

For all functions we synthesize here, we assert a given specification spec for the parallel
combination, typically that values (files, counters, data buffers, etc.) on the server end up in
corresponding variables on the client or vice-versa. Additionally, we assert that the logical clocks
(Section 5.5.5) on both the client and server are identical at the end of the execution. This ensures
that all send and receive functions were paired up, and in the right order.

The first function in the server is the main body6 which picks whether the transfer mode
is from the server to the client or the other way around, i.e., the command is “get file” or “put
file.” It then calls the appropriate transfer functions, reading or writing to disk as required. We
synthesize the corresponding client function using a ↓ tag on the entry point and ↑ on an inner
block.

6We simplify the main body of the server by only considering one client accept instead of the infinite loop, so
that it corresponds to one client that we are interested in synthesizing.

129

The second function in the server takes a file and sends it out into packets or reads packets
and outputs a file. We synthesize the corresponding inverse using a ↑ tag on the loop for the
transfer.

The third set of functions send or get an acknowledgment or a data packet. We synthesize
the corresponding client functions using ↑ tags.

The last function in the server takes the fields for acknowledgment or data and wraps it into
a packet and sends it. We synthesize the corresponding client function using a ↓ tag.

5.6.3 Experience and Performance

Table 5.1 shows the result of running PINS over our benchmarks. For each benchmark, we
present numbers for three aspects of the experiment (1) the benchmark characteristics, (2) the
runs of our mining heuristic, and, (3) the runs of PINS. For the benchmark characteristics we list
the lines of code and the number of axioms about the uninterpreted functions used in the program.
For the runs of our mining heuristic we report the sizes of the flowgraph in lines of code, the sizes of
the expression and predicate sets, and the total changes that the user had to make to those mined
templates. For the runs of PINS, we report the number of iterations it took for the algorithm to
converge to a stable set (mostly just one valid inverse that we inspected to be correct). Then we
report the fraction of the total time spent in each of the four subparts of the algorithm (symbolic
execution, SMT reduction to SAT and SAT solving, and prioritization, i.e., pickOne) and the total
time taken in seconds to stabilize and generate the inverse. Lastly, we report the size of the total
SAT instance that constrains the system to the stabilized set.

There were three programs in which the stabilized set contained more than one solution
before our tool exhausted memory or time. In LZW and LZ77 the solution set contained two
solutions each, and for LZW both were valid. There were four solutions left for Base64. For both
LZ77 and Base64 only one solution was valid while the rest spurious but the tool ran out of time
trying to add new paths.

Our mining heuristics were very accurate in inferring the right flowgraphs, expression, and
predicate sets. Of the total 322 non-trivial lines that the user would have had to guess otherwise,
our heuristics reduces the burden to modifications in 54 of those, i.e., 16%. The majority of these
were simple, and inferred by straightforward inspection of the paths PINS explored when run with
incomplete Πe and Πp sets. We note that PINS stabilizes and synthesizes the inverse for these
realistic programs in a few iterations (under 14 at most, and with a median of 3) within very
reasonable time (under 30 minutes at most, and with a median of 40 seconds), and the entire SAT
constraint is concise and small (at most 3k clauses). We also see from the fraction of time spent
in each subpart that symbolic execution and constraint reduction take the most time. Therefore
improvements to these will automatically benefit our synthesis technique.

5.7 Summary

In this chapter, we presented PINS, an approach to program synthesis that uses symbolic
execution to approximate the correctness constraints and satisfiability-based tools, from the pre-
vious chapters, to solve them. We applied the technique to program inversion and client-server
synthesis. We showed that PINS can successfully synthesize a wide variety of realistic programs.

5.8 Further Reading

Inductive and Deductive Synthesis Program synthesis techniques can be classified as belonging
to a spectrum that stretches from inductive synthesis on the one end and deductive synthesis on
the other. Inductive synthesis is an approach that generalizes from finite instances to yield an
infinite state program. One example of this approach is Sketching [246], which uses a model-
checker to generate counterexample traces that are used to refine the space of candidate programs.

130

P
er

ce
n
ta

g
e

o
f

to
ta

l
ti

m
e

B
en

ch
m

a
rk

L
o
C

M
in

ed
T

o
ta

l
N

u
m

.
N

u
m

.
S
y
m

.
S
M

T
S
A

T
T

o
ta

l
S
A

T

|f
g
|
|Π

p
|
|Π

e
|

C
h
n
g
s

A
x
m

s
It

er
.

E
x
e.

R
ed

.
S
o
l.

p
i
c
k
O
n
e

T
im

e
(s

)
S
iz

e

R
u
n

le
n
g
th

1
2

1
0

2
8

2
0

7
4
5
%

4
5
%

7
%

3
%

2
6
.1

9
6
6
8

L
Z

7
7

2
0

1
3

2
6

1
0

0
6
†

9
8
%

1
%

<
0
.1

%
<

0
.1

%
1
8
1
0
.3

1
3
3
0

L
Z

W
2
5

2
0

2
1
2

8
1
5

4
†

6
8
%

2
9
%

<
1
%

3
%

1
5
0
.4

2
3
7
3

B
a
se

6
4

2
2

1
6

3
6

1
3

1
2
‡

4
2
%

5
7
%

<
1
%

<
1
%

1
3
7
6
.8

2
5
9
8

U
U

E
n
co

d
e

1
2

1
1

2
6

6
3

7
8
4
%

1
2
%

1
%

3
%

3
4
.0

0
1
7
7

P
k
t

W
ra

p
p

er
1
0

1
6

1
6

5
2

6
1
%

9
6
%

3
%

<
1
%

1
3
2
.3

2
2
1
6
1

X
M

L
S
er

ia
li
ze

8
8

0
5

0
6

1
4

9
2
%

7
%

<
1
%

<
1
%

5
5
.3

3
6
9

∑ i
5

5
4

3
2

0
4

5
0
%

3
8
%

4
%

8
%

1
.0

7
5
1

V
ec

to
r

sh
if

t
8

7
1

6
0

0
3

2
1
%

7
3
%

2
%

4
%

4
.2

0
1
8
7

V
ec

to
r

sc
a
le

8
7

1
6

0
1

3
2
1
%

7
3
%

2
%

4
%

4
.4

1
1
9
1

V
ec

to
r

ro
ta

te
8

7
1

6
2

1
3

6
%

9
3
%

<
1
%

<
1
%

3
9
.5

1
3
2
7

D
ij

k
st

ra
’s

p
er

m
u
te

1
1

1
0

2
5

6
0

1
9
6
%

2
%

<
1
%

2
%

8
.4

4
4

L
U

-d
ec

o
m

p
-m

u
l

1
1

1
2

3
7

7
2

1
8
8
%

1
1
%

<
0
.1

%
1
%

1
6
0
.2

4
1
0

C
M

D
lo

o
p

2
0

1
3

1
9

2
5

3
1
5
%

8
0
%

<
1
%

4
%

2
2
.1

0
2
3
7

F
il
e

g
et

-s
en

d
1
4

8
1

7
2

5
1

<
1
%

>
9
9
%

<
1
%

<
0
.1

%
5
1
9
.6

7
3
1
5
7

A
ck

g
et

-s
en

d
1
2

4
1

5
0

3
1

5
%

8
9
%

1
%

4
%

1
.4

1
8
0

D
a
ta

g
et

-s
en

d
7

9
1

5
1

3
1

<
0
.1

%
>

9
9
%

<
1
%

<
0
.1

%
4
4
2
.2

9
3
9
2
0

P
k
t

g
et

-s
en

d
9

5
0

5
0

3
1

1
7
%

7
2
%

2
%

9
%

1
.0

3
4
1

T
ab

le
5.

1:
T

h
e

ex
p

er
im

en
ta

l
ca

se
st

u
d

ie
s

fo
r
P
I
N
S
.

U
n

le
ss

in
d

ic
a
te

d
o
th

er
w

is
e,

w
e

ru
n

th
e

a
lg

o
ri

th
m

(F
ig

u
re

5
.4

)
u

n
ti

l
o
n

ly
va

li
d

so
lu

ti
o
n

s
re

m
a
in

s
(a

n
d

ar
e

n
ot

re
fu

te
d

in
a

su
b

se
q
u

en
t

it
er

at
io

n
).

A
su

p
er

sc
ri

p
t

o
f
†

a
n

d
‡

in
d

ic
a
te

th
a
t

th
e

so
lu

ti
o
n

se
t

co
n
ta

in
s

2
a
n

d
4

re
m

a
in

in
g

so
lu

ti
o
n

s,
re

sp
ec

ti
ve

ly
.

131

Deductive synthesis, in contrast, refines a specification to derive the program [196], as discussed
in the previous chapter.

While our approach is similar to inductive synthesis, technically it lies midway between
inductive and deductive synthesis. We use paths instead of concrete traces and thus are able to
capture more of the behavior with each explored “example” path. This is better than concrete
inductive synthesis, and leads to practical tools as compared to deductive synthesis. At the same
time, it can never reach the formal guarantees provided by deductive synthesis approach. An
additional difference is that while previous approaches only refine the space either constructively,
through positive reinforcing examples, or destructively, through negative counterexamples, we
refine using both positive and negative examples.

Synthesis without formal verifiers Sketching (CEGIS) [246, 247] and even proof-theoretic syn-
thesis described in the previous chapter, rely heavily on formal verifiers. Sketching uses formal
verifiers to explain why invalid candidates are not correct and uses the counterexample for invalid
candidates to refine the space. Proof-theoretic synthesis encodes the synthesis problem as a search
for inductive invariants and therefore needs to infer complicated invariants (and requires a formal
verifier with support for such reasoning). In contrast, PINS uses symbolic execution and therefore
does not require reasoning about complicated invariants.

More on Sketching In terms of the solution strategy, our technique differs from Sketching in four
other key aspects. First, the SKETCH compiler uses novel domain specific reductions to finitize
loops for stencil [246], concurrent [247], or bit-streaming [248] programs, and is engineered to
solve the resulting loop-finitized problem. On the other hand, we finitize the solution space using
templates but never finitize loops. Second, we refine at the granularity of paths, while sketching
refines using concrete executions and since multiple concrete executions may follow a single path,
we are able to cover the space of inputs in fewer iterations. Third, we use SMT reasoning over the
correctness constraints to generate concise and small SAT instances that can be efficiently solved,
as shown by our experiments, while Sketching uses bit-blasting, which generates formulas that may
be difficult, as has been seen by other authors [137]. Lastly, the verification process in Sketching
can potentially be testing-based, but it would need to be exhaustive to find the counterexample.
On the other hand, we only need to find one feasible path when doing directed symbolic execution
to refine the search space. These differences point to important complementary strengths that we
intend to exploit in a future SKETCH-PINS hybrid tool.

132

Chapter 6

Engineering Satisfiability-based
Program Reasoning/Synthesis
Tools

“Truth is what works.”

— William James1

In this chapter, we describe the architecture and implementation of our tool set VS3(Verification
and Synthesis using SMT Solvers). This tool set includes the tools VS3

LIA and VS3
PA that implement

the theory presented in Chapters 2, and 3. We also use these tools for synthesis, as described in
Chapters 4 and 5.

6.1 Using off-the-shelf SAT/SMT solvers

Our invariant inference technique over linear arithmetic (Chapter 2) requires a SAT solver
for fixed point computation, while over predicate abstraction (Section 3), we additionally use
the theory decision procedures of SMT solvers and their built-in SAT solver. Our approaches to
synthesis, proof-theoretic synthesis (Chapter 4) and PINS (Chapter 5), reuse the verifiers built in
previous chapters and so use both SAT and SMT solvers.

During the development of the work reported in Chapter 2 we benchmarked various solvers.
These included Z3’s internal SAT solver [87], MiniSAT [100], ZChaff variants [204], Boolector [46],
MathSAT [47, 41, 40], and even a variant that we implemented ourself, based on MiniSAT. While
some performed better over certain instances, we found that the heuristics engineered within pop-
ular solvers, such as Z3 and CVC3, yielded most predictable results and consistently outperformed
most solvers. For the most part, we confirmed that for the instances we were generating the ef-
ficiency of the solvers correlated to their performance on the SMTCOMP benchmarks [18]. So
while it might be useful in extreme cases to engineer the satisfiability instances at the top-level, for
the most part it is sufficient to just rely on the solving capabilities of the best performing solver
available in public domain.

For SMT solvers, the results in this dissertation are from runs that use Z3 [87]. We are
aware of other comparable solvers, namely CVC3 [21, 19] and Yices [98, 225], which we intend to
try in future work.

6.2 Tool Architecture

Both VS3
LIA and VS3

PA use Microsoft’s Phoenix compiler framework [1] as a front end parser for
ANSI-C programs. Our implementation for each is approximately 15K non-blank, non-comment
lines of C# code.

1American Philosopher and Psychologist, leader of the philosophical movement of Pragmatism, 1842-1910.

133

+

Preconditions

Postconditions

+

SMT
Solver

Invariants
Boolean

Constraints

Candidate
Solutions

SMT
Solver

SAT
Solver

Cut-set

Predicate Set

Templates

CFG VCs
Phoenix

C Program

VS3

Figure 6.1: The architecture of the VS3
LIA and VS3

PA tools. In addition to the ANSI-C program (which
is replaced with the scaffold when running in synthesis mode), the user provides the templates, the
predicate sets, and optionally a cut-set. The user chooses between an iterative and a satisfiability-
based fixed-point computation.

The tool architecture is shown in Figure 6.1. We use Phoenix to give us the intermediate
representation, from which we reconstruct the control flow graph (CFG) of the program. The
CFG is then split into simple paths using a cut-set (either generated automatically with a cut-
point at each loop header or specified by the user). We then generate a verification condition (VC)
corresponding to each simple path. For fixed-point computation the tool provides two alternatives:

• Iterative fixed-point (Chapter 3) The iterative scheme performs a variant of a standard
dataflow analysis. It maintains a set of candidate solutions, and by using the SMT solver to
compute the best transformer it iteratively improves them until a solution is found.

• Satisfiability-based fixed-point (Chapters 2, and 3) In the satisfiability-based scheme, a predi-
cate p at location l is identified by a boolean indicator variables bp,l. For verification condition
vc, we generate the minimal set of constraints over the indicator variables that ensure that
vc is satisfiable. These constraints are accumulated and solved using a SAT solver, which
yields a fixed-point solution.

For proof-theoretic synthesis (Chapter 4) instead of taking a program as input, the tool
takes a scaffold, and instead of using Phoenix to generate the CFG if generates a template CFG
that is used by the rest of the system. For PINS (Chapter 5), the core tool is just used to find
candidate solutions that are valid for all the constraints generated over some paths. The actual
PINS algorithm that iteratively refines the space is implemented as a wrapper around the core
solver.

6.2.1 Tool Interface

In automatic cutpoint mode, VS3 searches for inductive program invariants at loop headers.
Alternatively, in some cases the invariants are simpler if inferred at specific locations, which should
form a valid cut-set such that each cycle in the CFG contains at least one location. VS3 also
supports a manual mode for user-specified cut-sets.

The user also specifies the global invariant template and global predicate set for predicate
abstraction, as shown. The template is used for invariants at each cut-point, and the predicate
set specifies the candidate predicates for the unknowns in the template. We specify the template
and predicate set globally to reduce the annotation burden. Specifying them separately for indi-
vidual cut-points could potentially be more efficient but would add significant overhead for the
programmer. We typically we used a predicate set consisting of inequality relations between rele-
vant program and bound variables, and if required, refined it iteratively after failed attempts. In
our experience, over the difficult benchmark programs described in previous chapters, coming up
with the templates and predicate set is typically easy for the programmer.

134

6.2.2 Solver Interface

SMT solvers typically provide an API interface that calls the solver to directly manipulate
the stack of asserted facts (directly pushing and poping assertions). We currently use the API
exported by Z3. We also provide an alternative mode in which all queries are sent to the solver
through the SMT-LIB interface, which is a format supported by all major solvers [20].

While Z3 is fairly robust at handling most of the queries we generate, but it has specific
limitations that we had to alleviate through mechanisms at the analysis stage before passing the
query to Z3. We describe these limitations and our workarounds next. Other solvers have similar
limitations.

6.2.2.1 Compensating for limitations of SMT solvers

The generic primitives provided by SMT solvers are expressive but are lacking in some
aspects that are needed for our application. We augment the solver by providing a wrapper
interface that preprocesses the SMT queries and adds hints for the solver.

Patterns for quantifier instantiation. The current state-of-art for reasoning over quantified facts
uses the now commonly known technique of E-matching for quantifier instantiation [86]. E-
matching requires patterns to match against ground terms. Because individual SMT queries in
our system are over simple quantified terms, a simple heuristic to automatically generate patterns
suffices. Given a quantified fact with bound variables k̄ and bound boolean term F , we recur-
sively parse F and return valid patterns from F ’s subterms. A subterm f is a valid pattern if
it contains all the bound variables and at least one subterm of f does not contain all the vari-
ables. For example, for the fact ∀k : k > 10 ⇒ A[k] < A[k + 1], we compute the set of patterns
{{k > 10}, {A[k]}, {A[k + 1]}}, and for ∀k : k ≥ 0 ∧ k < v ⇒ A[k] < min we compute the set
{{k ≥ 0}, {k < v}, {A[k] < min}}. This simple heuristic is potentially expensive, but allows for
automatic and, in practice, fast proofs or disproofs of the implications we generate.

Saturating inductive facts. SMT solvers have difficulty instantiating relevant facts from inductive
assumptions. For instance, in our experiments, we encountered assumptions of the form kn ≥
k0∧∀k : k ≥ k0 ⇒ A[k] ≤ A[k+1], from which A[k0] ≤ A[kn+1] was needed for the proof. Z3 times
out without finding a proof or disproof of whether A[k0] ≤ A[kn + 1] follows from this assumption.
Notice that the pattern k ≥ k0 will only allow the prover to instantiate A[kn] ≤ A[kn + 1] from
the ground fact, which does not suffice to prove A[k0] ≤ A[kn + 1].

We therefore syntactically isolate inductive facts and saturate them. We pattern match
quantified assumptions such as the above (consisting of a base case in the antecedent and the
induction step in the consequent of the implication) and assert the quantified inductive result.
For example, for the case above, the saturated fact consists of ∀k2, k1 : k2 ≥ k1 ≥ k0 ⇒ A[k1] ≤
A[k2 + 1]. This, along with the ground term kn ≥ k0, provides the proof.

Theoretically, our approach for saturating inductive facts here is similar to the proposals
for axiomatizing reachability using axioms [173, 152, 179, 54]. All these approaches are efficient in
practice, but necessarily incomplete, as it is well-known that complete first order axiomatization
of transitive closure is impossible [187]. Also related are proposals for simulating transitive closure
in first order logic [186]. More details on these approaches can be found in the related work
section of a recent paper by Bjo/rner and Hendrix [32]. In the paper, Bjo/rner and Hendrix isolate
a decidable fragments of a logic that can encode certain forms of transitive closure (appropriate
for linked structures, such as lists, and trees) by integrating an LTL checker with an SMT solver.
The corresponding combination is a promising direction for future handling of heap structures in
our framework.

Explicit Skolemization for ∀∃. Z3 v1.0 does not correctly instantiate global skolemization func-
tions for existentials under a quantifier, and so we must infer these functions from the program2.
An approach that suffices for all our benchmark examples is to rename the skolemization functions

135

at the endpoints of a verification condition and to insert axioms (inferred automatically) relating
the two functions. VS3 can infer appropriate skolemization functions for the two cases of the
verification condition containing array updates and assumptions equating array values. Suppose
in the quantified formulae at the beginning and end of a simple path, the skolemization functions
are skl and skl′, respectively. For the case of array updates, suppose that locations {l1, l2, . . . , ln}
are overwritten with values from locations {r1, r2, . . . , rn}. Then we introduce two axioms. The
first axiom states that the skolemization remains unchanged for locations that are not modified
(Eq. 6.1), and the second axiom defines the (local) changes to the skolemization function for the
array locations that are modified (Eq. 6.2):

∀y : (∧i(skl(y) 6= ri ∧ skl(y) 6= li)) ⇒ skl′(y) = skl(y) (6.1)∧
i∀y : skl(y) = li ⇒ skl′(y) = ri (6.2)

For the case of assumptions equating array values, we assert the corresponding facts on skl′, e.g.,
if Assume(A[i] = B[j]) occurs and skl′ indexes the array B then we add the axiom skl′(i) = j.

6.2.2.2 Axiomatic support for additional theories

Modeling quadratics For most of this dissertation we have restricted our constraints to be linear
(with propositional connectives) but at times quadratic constraints are critically required. Such
is the case for some programs we synthesize (and verify) in Chapter 4, such as a program that
computes the integral square root and Bresenham’s line drawing algorithm. In this case we provide
an incomplete support for handling quadratic expressions.

Our approach consists of allowing the system to contain quadratic expressions, and ma-
nipulating them appropriately, e.g., by applying distributing multiplication over addition where
required, until the very end when the constraints are required to be solved. At that stage, we
provide a sound but incomplete translation of the quadratic constraints to linear constraints.

We rename each quadratic term a ∗ b into a new variable a b in the constraints to get a
linear system from a quadratic system. This modeling is sound because if a solution exists in the
new system, it only uses the axiom of equality between quadratic terms. It is incomplete because
a quadratic system may have a solution, e.g., using the axiom a = b ⇒ a ∗ a = b ∗ b, but the
corresponding linear system with the renaming, may not have a satisfying solution.

We have found that this sound but incomplete modeling suffices for our programs for the
most part. In cases where it does not, we add appropriate assumptions, e.g., assume(a = b ⇒
a a = b b), to get consistent solutions on top of the incomplete modeling.

Reachability Some program verification tasks require support for non-standard expressions, e.g.,
reachability in linked-list or tree data structures. SMT solvers, and in particular Z3, support the
addition of axioms to support these kind of predicates.

There are two extra steps in the verification of such programs. First, we define the semantics
of field accesses and updates on record datatypes using sel and upd. A field access s→ f is encoded
as sel(f, s), and an update s → f := e is encoded as upd(f, s, e). Second, by asserting axioms
in the solver, we define the semantics of higher level predicates, such as reachability, in terms of
the constructs that appear in the program. Let x ; y denote that y can be reached by following
pointers starting at x. Then for the case of reasoning about singly linked lists connected through
next fields, we augment the SMT solver with the following reachability axioms:

∀x . x; x Reflexivity
∀x, y, z . x; y ∧ y ; z ⇒ x; z Transitivity
∀x . x 6= ⊥ ⇒ x; (x→ next) Step: Head
∀x, y . x; y ⇒ x = y ∨ (x→ next) ; y Step: Tail
∀x . ⊥; x ⇒ x = ⊥ End

2We are aware of work being pursued in the solving community that will eliminate this restriction. Therefore in
the future we will not need to infer skolemization functions.

136

For example, using these axioms the solver can prove that head ; tail ∧ tail ; n ∧ n 6=
⊥ ⇒ head; (n→ next).

6.3 Concurrent reduction for super-linear speedup

Our algorithms exhibit an embarrassingly parallel structure. For the case of the iterative
technique, each individual candidate can be improved in parallel, and for the case of a satisfiability-
based technique each verification condition can be reduced to its boolean constraint in parallel.
Therefore, we developed a multithreaded implementation of each algorithm. Multithreading is
especially natural and useful for the bi-directional satisfiability-based fixed-point computation,
which is not restricted to analyzing verification conditions in any particular order.

Our multithreaded implementation achieves super-linear speedup, because it is able to re-
duce the amount of information computed, using a novel technique which we call partial solution
computation. This approach generates an equi-satisfiable formula that has the same solution but
is significantly smaller. By being equi-satisfiable it ensures that the invariant/program solutions
computed are identical to what would be computed using the larger formula. To illustrate the
redundancy, consider the case of program verification, where an invariant is constrained in simi-
lar ways by multiple verification conditions (that start or end at that invariant). A reduction to
boolean constraints that is oblivious of this fact computes a significantly larger formula than one
that discovers and eliminates redundant clauses. To discover redundancy, we use the notion of
partial solution computation.

Partial solution computation The satisfiability-based technique needs to reduce verification con-
ditions into a boolean formula that captures the semantic content of the verification condition. Our
multithreaded implementation interleaves these reductions for different verification conditions.

We build on the insight that we can compute partial solutions for subformulae, for the case
of the final boolean SAT formula being satisfiable, and infer unsatisfiability otherwise. Recall that
for the satisfiability-based encoding of VCs in Chapter 3 (Eq. 3.7), we are incrementally computing
a SAT instance that is typically small in overall size, but the computation of each individual clause
(the second term of Eq. 3.7) involves queries to the SMT solver, and is therefore expensive. We
eliminate redundant clauses by using information computed by other threads (working on different
reductions) about which indicator boolean variables have been decided to be either true or false
based on the sub-formula computed so far.

We compute partial solutions for a boolean formula F by checking, for individual boolean
variables b ∈ vars(F), if the formula assigns a truth value to b. We do this by separately checking
the satisfiability of F ⇒ b and F ⇒ ¬b. Both of these implications will hold iff the final formula
(whose clauses are a superset of the clauses in F) is unsatisfiable. If we find this, we can terminate
right away. If, on the other hand, both implications do not hold then we have a consistent sub-
formula for which we compute the variables whose values have been decided. We remove from
consideration all those variables for which neither implication is satisfiable. The partial solution
is then the assignment of truth values to the remaining variables as indicated by the satisfiability
of F ⇒ b (true) or F ⇒ ¬b (false). The correctness of this optimization is due to the following
theorem.

Theorem 6.1 (Partial Solution Computation) Let φ be a boolean formula and let φ⊆ be a
subset of the clauses from φ. Then:

(a) If φ⊆ is unsatisfiable then φ is unsatisfiable.

(b) If φ⊆ ⇒ b then any satisfying assignment to φ assigns true to b. Correspondingly, if φ⊆ ⇒ ¬b
then any satisfying assignment to φ assigns false to b.

(c) If φ⊆ ⇒ b ∧ φ⊆ ⇒ ¬b for any b that appears in φ⊆, then φ⊆ is unsatisfiable.

Proof:

137

(a) If φ⊆ is unsatisfiable, then no assignment to a superset of the clauses, i.e., φ, can assign
satisfying values to the clauses that make up φ⊆.

(b) Suppose otherwise, i.e., let φ⊆ ⇒ b and let some satisfying assignment to φ assigns false
to b. Since φ⊆ ⇒ b (implicitly quantified over all variables in the formula) holds, and in
particular holds for b

.
= false, it implies that φ⊆

.
= false for all other assignments to the

remaining variables. That is φ⊆ is unsatisfiable with b assigned false if φ⊆ ⇒ b. By Part
(a) we know that φ is unsatisfiable—contradiction. Therefore, b has to be assigned true if
φ⊆ ⇒ b.

A similar argument shows that b has to be assigned false if φ⊆ ⇒ ¬b.

(c) First observe that Part (b) applies to the degenerate case of φ being φ⊆ as φ⊆ ⊆ φ⊆.
Now if φ⊆ ⇒ b ∧ φ⊆ ⇒ ¬b then by Part (b), we know that any satisfying assignment to
φ⊆ will assign true to b (by the first implication) and it will assign false to b (by the
second implication). Both statements cannot be valid together, and consequently we have a
contradiction. Therefore, it must be the case that φ⊆ is unsatisfiable.

�

The partial solution computation significantly speeds up the reduction process, when the
different threads working on different verification conditions propagate their reductions. The true
or false assignments for variables whose values have been decided are directly substituted, which
typically results in part of the formula being simplified.

Computing maximal solutions using partial solutions The partial solution to the final SAT in-
stance can be used to compute the greatest or the least fixed-point solution. For the boolean
variables that are not in the partial solution any truth assignment corresponds to a valid invariant.
Therefore, by assigning false to the variables of a negative unknown and true to the variables of a
positive unknown we get a least fixed-point. The opposite assignment yields a greatest fixed-point.
In practice, we do not care about the optimality of the solution generated by the satisfiability-based
approach and therefore have not implemented this last greatest/least-fixed point optimization.

6.4 Summary

Building on the theory described in Chapters 2—5, in this chapter we described the imple-
mentation challenges of building a tool for program reasoning and program synthesis. The tool
can infer expressive properties of programs using minimal annotations in the form of invariant
templates, and can also synthesize programs with minimal descriptions, given by the user.

138

Chapter 7

Extensions and Future Work

“Heavier-than-air flying machines are
impossible.”

— Lord Kelvin1

This dissertation focuses on program reasoning and program synthesis for the case of se-
quential, imperative programs. There are three sets of extensions that we plan to address in the
future. The first set consists of augmenting the expressiveness of our schemes for reasoning and
synthesis while still remaining in the domain of sequential, imperative programs. The second set
consists of applying and developing techniques for reasoning about and synthesizing programs and
proofs in non-(sequential, imperative) domains. The third set consists of treating synthesis as
augmenting compilation, where we attempt to synthesize modules that plug into legacy code such
that the new program meets desired specifications.

7.1 Expressiveness

Linear Arithmetic The work described in Chapter 2 can be extended in at least two directions.
The first one is to extend these techniques to discover a richer class of invariants involving arrays,
pointers, and even quantifiers. The technical details of these extensions have already been worked
out, and we are currently in the process of implementing these ideas in our tool. Second, we
are investigating use of new constraint solving techniques, in particular QBF (Quantified Boolean
Formula) solvers. This would alleviate the need for applying Farkas’ lemma to compile away
universal quantification, leading to smaller sized SAT formulas, but with alternating quantification.
While in general QBF is PSPACE-complete, and therefore we would expect these instances to be
fairly difficult to solve, it may be that for limited classes of instances the QBF formulae are
efficiently solvable, similarly to the use of SAT/SMT solvers in this dissertation.

Predicate Abstraction In Chapter 3 we restricted ourselves to simple theories supported by SMT
solvers. In particular, we most extensively use the theory of arrays (that too without extensionality,
which states that ∀A,B : ∀i : (A[i] = B[i]⇒ A = B) [45, 253]), uninterpreted functions, and linear
arithmetic, which are all basic theories supported by all solvers. Today, SMT solvers in fact support
many more theories efficiently. For instance, we added incomplete support for reachability and
were able to verify small linked-list programs. There have been recent proposals, that incorporate
a logical theory for unbounded reachability within an SMT solver, which can potentially be used
directly to verify heap manipulating programs [225]. In particular, we intend to try verifying
the full functional correctness of list/tree and other data structure operations (e.g. insertion in
AVL/Red-Black trees) within our satisfiability-based framework for reasoning. Additionally, such
extensions will also allow the synthesis of heap manipulating programs.

Another important consider is that of abstraction refinement [60]. Ideas from counterex-
ample guided refinement can be incorporated in our framework to build a system that supports

1President of the Royal Society, 1895.

139

automatic predicate discovery. More interestingly, instead of traditional iterative approaches to
predicate inference (e.g., the maximal solution computation in Chapter 2), it should be feasible to
encode the synthesis of predicates as solutions to a satisfiability instance.

Modular Synthesis Program synthesis as we have considered synthesizes the entire program cor-
responding to a given functional specification (Chapter 4) or related program (Chapter 5). In
fact, even previous approaches take a similar end-to-end approach to synthesis [246]. However, the
eventual success of automated synthesis will lie in its ability to synthesis programs in terms of an
abstract interface corresponding to lower level functions.

We implicitly explored this issue through the use of predicates over uninterpreted functions
(with externally defined semantics) in proof-theoretic synthesis. An instance of this was the use
of definitional functions (and axioms) for the case of dynamic programming programs; or the use
of uninterpreted functions modeling the layout of two dimensional arrays; or the use of the swap

predicate for sorting programs. While these demonstrate the feasibility of synthesis over an abstract
interface to lower level functions, they are not modular synthesis. In particular, a defining feature
of modular synthesis is the ability of the system to automatically infer what functions implement
which functionality, i.e., the interface boundary. For the discussion in this dissertation, we had
the interface boundary manually specified by the user. Inferring the interface boundary is a key
technical challenge that needs to be addressed.

7.2 Applications to non-(sequential, imperative) models

Cross-synthesis: Architecture-specific synthesis In Chapter 4 we proposed the use of resource
constraints to restrict the space of candidate programs. We envision using resource constraints to
focus attention to certain classes of computations, instruction sets, and memory access patterns,
such as those allowed by peculiar architectures, e.g., Cell Broadband Architecture [105], GPUs [214]
for which the CUDA [210] and OpenCL [251] programming models have been proposed. We would
define the synthesis problem as taking a program in an standard unrestricted programming model,
and the synthesizer would generate the corresponding semantically equivalent program in the
restricted programming model.

Concurrency Recent work on local reasoning for concurrency [259, 95, 107] has the flavor of inter-
procedural summary computation, but instead of computing summaries for procedures computes
summaries of interference behavior of threads. Our goal-oriented satisfiability-based invariant in-
ference approach is particularly suitable for interprocedural summary computation and therefore
has potential to be useful for thread interference summary computation as well. Using precise inter-
ference summaries, thread modular reasoning can facilitate verification and synthesis of concurrent
programs.

Synthesizing functional programs A inference technique for dependent types can be used to syn-
thesize functional programs in the same way program verifiers can synthesize imperative pro-
grams. For it to be useful for synthesis, inference is necessarily required to be annotation-less as
annotations tag given programs. Proposals for limited-annotation limited dependent-type infer-
ence [230, 162, 255] have the potential to be used for synthesis of functional programs.

Additionally, Appel described how Single Static Assignment (SSA [231, 4]) style is essentially
functional programming [6], and we know that continuation passing style (CPS)—the intermediate
representation of choice for functional program compilers—and SSA are formally equivalent, and
optimizations formulated for one are directly applicable to the other [163]. Hence it may be possible
to use the techniques we developed here directly for synthesizing functional programs by suitable
representational translation.

Synthesizing proofs of progress and preservation A more radical application of synthesis could
be to the domain of “proof-synthesis.” When designing a type-system, the method of choice for

140

proving its correctness is to use an operational semantics approach and prove progress and preser-
vation [215]. The key difficulty in such proofs is the inference of a suitable induction hypothesis.
With a correct hypothesis the proof typically is mostly mechanical with case splits based on the
structure of the language. We can pose the problem of induction hypothesis inference as invariant
inference and the proof cases as imperative paths that need to be synthesized.

7.3 Synthesis as augmenting compilation

Synthesizing correctness wrappers We propose synthesizing only fragments of code that serve as
wrappers around otherwise potentially incorrect programs. Given a specification of correctness
(lack of crashes, no information leaks, etc.), and a program that potentially does not meet the
specification, the task would be to synthesize a wrapper that calls into the raw programs and
modifies its behavior at appropriate locations such that it meets the specification.

One application may be to information flow security. Consider a browser that can potentially
leak information through Javascript. For every location in the browser source code where a call
is made into the Javascript engine, we synthesize and insert a sanitization function that ensures
that only low security data passes through. Another application may be in making distributed
computation robust. In this case, the wrapper would serve as a monitoring state machine that
terminates, starts, or restarts computation on detecting anomalous behavior. Another potential
application is to proof-carrying code (PCC) [208]. In traditional PCC, the client has a specification
and the developer is responsible for sending a certificate along with the program, and the client
verifies the certificate to check if it meets the security policy. We can imagine the client sending
a (sanitized) version of his policy to the developer such that the developer only writes a partial
program, and the synthesizer fills out the remainder such that the resulting program is guaranteed
to meet the specification.

Synthesizing aspects (cross-cutting concerns) Aspect-oriented programming [164] defines a pro-
gramming model in which the program’s functionality is divided not by lexical boundaries but
by semantic similarities of various fragments. For instance, authorization and logging are typical
cross-cutting concern [110]. While aspects can lead to cleaner software if used well, they can also
leads to fragmentation of code away from the data, e.g., code manipulating a variable could be in
multiple aspects that are scattered all throughout the codebase, possibly far away from the class
owning the variable. We can imagine a programming model in which the only allowable aspects
are the ones that the synthesizer generates. In such a scenario the only codebase available to
the developer is the one that is localized, removing any maintainability concerns of aspects. The
aspects would be suitably synthesized (and be correct) for any change to the codebase made by
the developer as the code corresponding to the aspect will never be directly modified.

Synthesizing “failsafe”s Programs are rarely reliable or robust. While we can verify their cor-
rectness, or lack thereof, using the reasoning techniques developed in this dissertation, we can
potentially also synthesize bypass mechanisms that ensure that failing programs are sandboxed.
Similar to failure-oblivious computing [229], but more semantically aware, such a wrapper would
keep track of out-of-bounds reads and writes and instead of indiscriminately allowing them, would
consider the changes in program behavior from a given baseline and suitably change values to
match statistically more probable program states.

Synthesizing attackers An interesting application to security verification may be to model the
attacker as an unknown state machine (potentially with an unbounded state space). Then using
the techniques described in this thesis, we can imagine defining a specification of a bad state, i.e.,
defining the existence of an attack. We then synthesize an attacker such that its combination with
the program under consideration meets the specification, i.e., shows the existence of an attacker
and corresponding attack.

141

Chapter 8

Related Work

“The history of mankind is the history
of ideas.”

— Luigi Pirandello1

The work in this dissertation builds on significant advances in programming languages theory
in the last few decades. We review a tiny fraction of that related literature in this chapter.

8.1 Program Reasoning

The desire to do precise program reasoning is not new. Foundational and widely accepted
frameworks in which program analyses can be formulated include Kildall’s data-flow analysis [165],
Cousot and Cousot’s abstract interpretation [73], and Clarke, Emerson, and Sifakis’ model check-
ing [99]—all of which perform iterate approximations of program properties. This dissertation
builds on a relatively more recent non-iterative constraint-based framework proposed by Manna
et. al. [63, 236]. A constraint-based framework allows building analyses that assume templates to
encode program semantics as finite constraints.

The history of program reasoning—verification and property inference—is vast and varied,
and we will necessarily be unable to cover all related work. We discuss the ones most relevant to
our work in this dissertation.

8.1.1 Program Verification

For program verification, we consider a somewhat linear progression based on the technical
difficulty of techniques based on invariants.

8.1.1.1 Invariant validation using SMT solvers

The first towards formally verified software does not even talk of invariant inference. Even
without inference, the task of just validating user-provided invariants is non-trivial. The difficulty
in invariant validation comes from discharging complicated invariants, which could be quantified,
making the verification condition discharging process undecidable in general. Before the advent of
SMT solvers, either custom theorem provers were used, or domain-specific decision procedures for
limited forms of invariants were used.

With the increase in size of software, resulting in a more significant need for formally cor-
rect components, invariant modeling languages have gained popularity. Microsoft’s Spec# [17]
and Dafny [183], the Java Modeling Language (JML) [51], ESC/Java [112] are examples of such
languages. Similar user-provided invariant checking approaches exist that validate very expres-
sive program properties by exploiting the power of SMT solvers. In particular, they leverage the

1Italian short-story Playwright, Writer, Dramatist and Novelist, who was awarded the Nobel Prize in Literature
in 1934 for his “bold and brilliant renovation of the drama and the stage,” 1867-1936.

142

ability of these solvers to reason about formulae over combinations of different theories. These
approaches essentially treat SMT solvers as limited forms of theorem provers. Approaches in this
domain include checkers for loop optimization [151], arbitrary C assertions [241], low-level sys-
tems code [65], and even concurrency properties [180]. There are also larger frameworks in which
analyses can be written, e.g., the Why/Krakatoa/Caduceus deductive verification system [109], or
Boogie/PL [184, 16].

Verifiers of this form work with the assumption that an external oracle exists that generates
the difficult parts, i.e., invariants, in the proof required for verification. This external oracle
could be a human programmer or a proof-generating compilation step. The system then generates
constraints over the invariants using the program, and the SMT solver is used to discharge these
constraints, validating the externally provided invariants. These projects address a question that
is complementary to this dissertation. We talk of invariant and program inference, while these
validation approaches use the result of inference (from techniques such as ours) and verify much
larger codebases.

8.1.1.2 Invariant Inference over Linear Arithmetic

While invariant validation techniques are directed towards scalability, invariant inference
targets expressivity. The guiding objective for invariant inference technology is the dream of fully
automatic full functional verification. So while it may be possible with invariant validation to
formally prove a particular piece of software correct, when moving to the next piece of software,
we have to start from scratch. On the other hand, if we succeed in building automatic inference
techniques for expressive invariants, then each successive piece of software does not require pro-
portional human effort. Therefore the benchmarks in this field consist of small but complicated
programs that require inference techniques for very expressive invariants. The hope is that if the
techniques work for these programs, then for larger programs the reasoning required will still be
within the reach of the tool. Linear arithmetic is one tractable, yet expressive domain for which
inference techniques have been designed.

Techniques based on abstract interpretation Cousot’s abstract interpretation is a foundational
framework for specifying program property inference as iterative approximations over a suitable
domain (a lattice of facts in which the invariants are expected to lie) [73]. Using abstract in-
terpretation, sophisticated widening techniques [126, 127], abstraction refinement [267, 133], and
specialized extensions (using acceleration [125], trace partitioning, and loop unrolling [34]) have
been proposed for discovering conjunctive linear inequality invariants in an intraprocedural setting.
Leino and Logozzo also propose introducing a widening step inside SMT solvers to generate loop
invariants [185]. For disjunctive domains, powerset extensions over linear inequalities have been
proposed [119, 134]. There are also alternative approaches that exploit the structural correlations
between the disjunctive invariant and the control flow structure for disjunctive invariant infer-
ence [233, 30]. All these are specialized to work for specific classes of programs. In contrast, the
satisfiability-based approach we propose in Chapter 2 can uniformly discover precise invariants in
all such classes of programs with arbitrary boolean structure, if required. While an iterative ap-
proach can be advantageous for weakest precondition and strongest postcondition inference, where
we desire to compute the extremum of the sub-lattice making up the fixed-points, for the case of
verification where any fixed-point suffices, a satisfiability-based approach offers significant advan-
tages: It is goal-oriented and thus does not compute facts that are redundant to the assertions
being proved.

In the interprocedural setting, there has been work on discovering linear equality rela-
tionships for interprocedural verification [232, 205]; however the problem of discovering linear
inequalities is considered difficult. Very recently, some heuristics for linear equality relationships
have been proposed by extending earlier work on transition matrices and postponing conditional
evaluation [239]. The precision of these techniques is unclear in the presence of conditionals. The
approach in Chapter 2 handles disjunctive reasoning seamlessly, and it can discover linear inequal-
ities interprocedurally as precisely as it can intraprocedurally. The approach is goal-oriented and

143

so the system only discovers relevant summaries that are required for verification of call sites. Ad-
ditionally, abstract interpretation based summary computation needs to iterate multiple times to
ensure the summary is as weak in the pre- and as strong in the postcondition as required. We have
not experimented with interprocedural benchmarks over predicate abstraction, but we believe the
satisfiability-based technique should possess the same theoretical benefits as over linear arithmetic.

Techniques based on constraint solving Theoretical expositions of program analysis techniques
frequently formulate them as constraints (constraint-based CFA [211], type inference [222], reach-
able states in abstract interpretation [73], and model checking [99] among others) and typically
solve them using fixed-point computation. We are not concerned with techniques such as those
here, but instead with techniques that use a constraint solver at the core of the analysis, i.e.,
those that reduce the analysis problem to constraints to be solved by either mathematical, SAT,
or SMT solvers. Constraint-based techniques using mathematical solvers, have been successfully
used to discover conjunctive linear arithmetic invariants by Manna et. al. [63, 235, 234, 236] and by
Cousot [76]. The satisfiability-based approach presented here can be seen as an extension of these
constraint-based techniques and can handle invariants with arbitrary, but pre-specified, boolean
structure and also in a context-sensitive interprocedural setting—partly because we use a SAT
solver at the core instead of mathematical linear programming solvers.

Constraint-based techniques have also been extended for discovering non-linear polynomial
invariants [161] and invariants in the combined theory of linear arithmetic and uninterpreted
functions [28], but again in a conjunctive and intraprocedural setting. It is possible to combine these
techniques with our formulation to lift them to disjunctive and context-sensitive interprocedural
settings.

Constraint-based techniques, being goal-directed, work naturally in program verification
mode where the task is to discover inductive loop invariants for the verification of assertions.
Otherwise, there is no guarantee on the precision of the generated invariants. Simple iterative
strategies of rerunning the solver with the additional constraint that the new solution should
be stronger, as proposed by Bradley and Manna [42], can have extremely slow progress, as we
discovered in our experiments. Our approach for strongest postcondition provides a more efficient
solution. Additionally, we present a methodology for generating weakest preconditions.

Other approaches can also be viewed as being constraint-based, e.g., SATURN [272], which
unrolls program loops a bounded number of times, essentially reducing the program analysis prob-
lem to a circuit analysis problem that has a direct translation to SAT. SATURN has been suc-
cessfully used for bug finding in large programs [94]. In contrast, the approach in Chapter 2 can
potentially find the most-general counterexample and can also find bugs in programs that require
an unbounded or a large number of loop iterations for the bug to manifest.

Proofs and counterexamples to termination Termination analysis is an important problem with
the potential for significant practical impact. The primary approach to proving termination prop-
erties in imperative programs is through ranking functions for each loop. Ranking functions impose
a well-founded relation on the iterations of a loop, proving its termination. Work by Colon and
Sipma [64], Podelski and Rybalchenko [220], Bradley et. al. [43, 44], Cousot [76], and Balaban
et. al. [9] made key strides in inferring linear ranking functions. The Terminator project incor-
porates many of these ideas and others into a usable system for proving termination of systems
code [24]. The SPEED project attempts to tackle a harder problem, that of computing symbolic
bounds for loops and recursive functions [139]. Such an analysis can be used to bound resource
usage, including time, space, and communication. On the flip side, techniques can attempt to find
counterexamples to termination, i.e., evidence of non-termination, such as the approach by Gupta
et. al. [143]. Their technique finds counterexamples to termination properties by identifying lassos
(linear program paths that end in a non-terminating cycle) and using a constraint solving approach
to find recurring sets of states.

The approach for bounds analysis in Chapter 2 is one solving technology that can be applied
towards bounds, termination and non-termination analysis. Additionally, by inferring maximally
weak preconditions, the approach can also be used for conditional termination analysis, where we

144

infer preconditions under which the program terminates. Our scheme for proving non-termination
is more direct than previous proposals and can potentially find the most-general counterexample
to termination.

8.1.1.3 Invariant Inference over Predicate Abstraction

Template-based analyses The template-based approach used in this work is motivated by recent
work on using templates to discover precise program properties, such as numerical invariants by
Manna et. al. using mathematical solvers [234, 235, 63], Kapur using quantifier elimination [161],
Beyer et. al. for the combination with uninterpreted functions [28], Gulwani et. al.’s use of tem-
plates for quantified invariants in an abstract interpretation framework [138]. All these techniques
differ in expressivity of the templates, as well as the algorithm and underlying technology used to
solve for the unknowns in the templates.

Except for Gulwani et. al.’s work, all the other techniques employ a constraint-based ap-
proach to encode fixed point, reducing invariant generation to the task of solving a constraint.
However, these techniques use specialized non-linear solvers. On the other hand, we use SAT/SMT
as our core solving mechanism. We perceive that mathematical solvers are an overkill for the dis-
crete constraint solving task at hand. Gulwani et. al. use an iterative least-fixed point approach;
however, it requires novel but complicated under-approximation techniques.

Predicate abstraction Predicate abstraction was introduced in the seminal paper by Graf and
Saidi showing how quantifier-free invariants can be inferred over a given set of predicates [129].
Since then the model checking community, e.g., in the SLAM model checker [15], in the MAGIC
checker [2], and Das and Dill’s work [83, 81], made significant strides in the use of predicate
abstraction as a very successful means of verifying properties of infinite state systems.

Our templates in Chapter 3 range over conjunctions of predicates wrapped in an arbitrary
boolean structure. This is in contrast to the integer coefficients we discover in Chapter 2 for a
linear arithmetic template. Our predicate abstraction template is inspired by important work on
predicate abstraction in the model checking community [113]. Efforts to improve the expressivity
of predicates used by these systems included Lahiri’s indexed predicates, which contain free vari-
ables that are implicitly quantified and so can express limited sets of quantified properties [177].
Podelski and Wies applied the idea of indexing to predicates over the heap to reason about heap
manipulating programs in the context of predicate abstraction [221]. Our work extends those
ideas to include an arbitrarily expressive, explicitly indexed, boolean structure over the predicates.
Additionally, since our transfer functions are direction-agnostic, and in particular not necessarily
forward, we can define weakest precondition analyses as well, which is not straightforward for
previous abstract interpretation-based definitions of the forward transfer functions.

In this dissertation, we have not considered the orthogonal problem of computing a set of
predicates that is precise enough to prove the desired property. Automatic abstraction refinement,
i.e., predicate discovery, has been critical in making predicate abstraction based model checking
mainstream. Counterexample guided abstraction refinement (CEGAR) by Clarke et. al. is one
core iterative approach that facilitates predicate discovery [60, 58]. In CEGAR, the model checker
attempts verification using the given abstraction, and if it fails a counterexample is produced that
helps infer predicates that refine the abstraction. Craig interpolation has been applied to the
counterexample path to discover appropriate predicates [148, 155]. Improvements to the core in-
terpolant scheme have since been developed [96], and approaches for doing it lazily are known [149].
We currently do not address this issue and instead assume that the set of predicates is provided.
As future work, it would be interesting to see how our technique can be combined with predicate
discovery techniques.

Computing optimal transformers Our iterative fixed-point algorithms in Chapter 3 can be seen as
computing the best transformer in each step of the algorithm. These abstract transformers are over
a lattice defined by the predicates and template. For the case of domains other than predicates,
Reps, Sagiv, and Yorsh designed decision procedures for such best abstract transformers [228].

145

Dependent types for assertion checking Types are coarse invariants, as they represent facts that
hold of the values stored in the typed variables. Types start resembling specifications and invariants
when we introduce the notion of dependent typing [8]. In dependent typing, the types of variables
can be qualified by arbitrary expressions. In typical proposals the dependent types are provided
by the user (and can possibly be validated by the type-checker) [23, 271, 66], which is similar to
the scenario of validating user-provided invariants.

One form of this qualification is using refinement types [117] where the standard ML
type, e.g., int, is refined by a predicate, e.g. a refinement indicating positive integers may be
{ν : int|ν > 0}. For refinement types, which are restricted dependent types, inference propos-
als exist by Knowles and Flanagan [169], by Rondon, Kawaguchi, and Jhala [230, 162], and by
Terauchi [255]. These proposals can be viewed as alternative type-based proposals for invariant
inference.

Symbolic model checking McMillan made a fundamental breakthrough in model checking by in-
troducing the notion of symbolic model checking [61, 50]. Symbolic model checking uses ordered
BDDs to represent transitions implicitly and without explicitly expanding the state graph [48].
Symbolic model checking is able to explore on order of 1020 states. The implicit symbolic repre-
sentation also means that program states are abstracted and fixed-point iteration is required to
infer properties of infinite state systems.

8.1.1.4 Verification without invariant inference

Model checking Traditional model checking [99, 57], i.e., non-symbolic model checking, checks
whether a system meets its specification by writing the system as a Kripke structure, i.e., a
transition system with property labels on the states, the specification as temporal logic formula, and
checking that the Kripke structure is a model of the temporal logic formula. The last step, model
checking, is done through explicit state exploration that labels the states with properties. While
model checking typically encounters a space explosion problem, various algorithmic techniques have
been designed to efficiently explore the space, and significant engineering effort has helped realize
practical verification systems using this approach. Notice that the only formal statement required
is the specification formula (given in a suitable logic, such as LTL or CTL), and thus potentially
any specification that is expressible is checkable. This is not the case when we attempt to infer
invariants, which are from limited domains and thus failure to infer invariants indicates either
that the domain is not expressive enough or that the program is faulty. While using invariants
introduces the possibility of restricting the class of verifiable programs, the benefits significantly
outweigh the costs, as was realized by the model checking community with the advent of symbolic
model checking, which requires fixed-point computations.

Approximate verification Program testing, be it concrete, symbolic [166], or a combination such
as concolic [240, 122], can be viewed as an approximation to formal verification. These techniques
do not infer invariants and are necessarily incomplete in the presence of loops. Testing attempts
to explore as many paths through the program as possible and ensure that on each path the
specification is met. While more practical for software developers that are unwilling to deal with
formal specifications, they lack formal guarantees, but have the advantage of being less demanding
on theorem proving resources. In fact, our synthesis approach in Chapter 5 inherits both the
advantages and disadvantages of an invariant-less technique.

Random interpretation combines ideas from testing with abstract interpretation to yield a
technique that may be unsound in addition to being incomplete, but the unsoundness is prob-
abilistically bounded [140, 141, 142]. Random interpretation alleviates the tension of exploring
multiple different paths, by combining/joining them using ideas from abstract interpretation. The
join is probabilistic (unlike traditional abstract interpreters whose join function is deterministic)
and is inspired by ideas from randomized algorithms. Using the novel join functions, random
interpretation yields probabilistic sound analyses.

146

8.1.2 Specification Inference

Strongest postcondition and weakest precondition inference Abstract interpretation works by iter-
atively generating a better and better approximation to the desired invariants [73]. Theoretically,
the core operators on the domains can be defined such that they either compute the strongest or
weakest invariants. In practice, strongest postcondition inference is tractable to compute and thus
most verification techniques defined using abstract interpretation compute the strongest postcon-
dition and then check if the assertions in the program hold under that postconditions. Weakest
precondition inference typically generates too many uninteresting preconditions, making its use
troublesome. In our work here, the use of templates restricts attention to preconditions of desired
forms.

Chandra, Fink, and Sridharan do propose a scalable heuristic technique for generating
useful preconditions in Java programs, but get past the difficulty of handling loops by using user-
annotations [53].

Precise summary computation Precise specification inference has the potential to facilitate mod-
ular analyses but is relatively unexplored. Yorsh, Yahav, and Chandra propose an approach
that combines abstract micro-transformers [274], while Gulwani and Tewari propose an abstract
interpretation-based framework for computing symbolic summaries [135]. Yorsh et. al.’s approach
is compositional, and Gulwani and Tewari’s approach computes weakest preconditions for generic
(symbolic) assertions and then unifies them. Both show the applicability to specific abstract do-
mains; Yorsh et. al. consider the typestate domain and Gulwani et. al. consider uninterpreted
functions and linear arithmetic. Both attempt to compute the most precise summaries for proce-
dures, and this may be too expensive. Our techniques on the other hand, are goal-oriented in that
they do global interprocedural analysis and compute only the summaries that are required for the
verification of the call sites and additionally works over any domain for which a satisfiability-based
analysis is available.

8.2 Program Synthesis

The desire to automatic synthesize programs is also not new, although much less research
effort has been directed towards synthesis as compared to program reasoning. While the problem
was called a “dream” by Manna and Waldinger in 1979 [191], and defined in the context of
model realizability by Pnueli and Rosner in 1989 [219], the worst-case complexity of program
synthesis hampered progress. Statements such as “one of the most central problems in the theory of
programming” and “programming is among the most demanding of human activities, and is among
the last tasks that computers will do well” in the above papers, served both to promote and relegate
program synthesis to being an unachievable dreams. It is 2010, and our view of automatic program
verification has changed from being intractable to being realizable. Correspondingly, it is time to
revise our view of automatic program synthesis from being impossible to being plausible. While we
are not claiming program synthesis is theoretically any easier now, the advent of powerful program
reasoning techniques gives us hope that this technology can be used for program synthesis—as we
do directly in Chapter 4 and indirectly in Chapter 5.

The primary reason for the skepticism towards program synthesis is that an automated tool
is unlikely to discover the “intuition” behind solving a problem. Human developers find these
insights and encode them in programs that meet a certain specification. What we argue in this
dissertation is that automatic program synthesis tools need not discover “intuition” but instead
need to find just one solution that meets the specification—one that is formally correct but may
not be the elegant solution a human developer may design. This is similar in spirit to program
verification, where the human developer may find an insightful proof while an automated tool finds
any valid proof that suffices, and this proof may not be elegant or even readable.

In the alternative perspective of providing the tool with the insight and having it fill out
the details, significant work has been done. Previous approaches can be categorized as either

147

deductive or inductive. We refer the reader to a recent survey describing the various categorization
of synthesis approaches as deductive (constructive), schema-guided, or inductive [22].

8.2.1 Deductive Synthesis

Deductive synthesis is the approach of successively refining a given specification using proof
steps, each of which corresponds to a programming construct. By having the human developer
guide the proof refinement, the synthesizer is able to extract the insight behind the program from
the proof.

Most of the work in deductive synthesis stems from the seminal work of Manna and Waldinger [195,
196]. Successful systems developed based on this approach include Bates and Constable’s NuPRL [67]
system, and Smith’s KIDS [244], Specware [200], and Designware [245] systems. In these systems,
the synthesizer is seen as a compiler from a high-level (possibly non-algorithmic) language to an
executable (algorithmic) language, guided by the human. To quote Smith, “the whole history of
computer science has been toward increasingly high-level languages--machine language, assembler,
macros, Fortran, Java and so on—and we are working at the extreme end of that.”

While such systems have been successfully applied in practice, they require significant hu-
man effort, which is only justified for the case of safety/mission-critical software [101]. As such,
these systems can be viewed as programming aids for these difficult software development tasks,
somewhat related to the idea of domain-specific synthesizers such as AutoBayes for data-analysis
problems [111], StreamIt for signal-processing kernels [256], or Simulink for hardware synthesis [26].

We categorize proof-theoretic synthesis from Chapter 4 as midway between deductive and
schema-guided synthesis. Schema-guided synthesis takes a template of the desired computations
and generates a program using a deductive approach [115]. Some heuristic techniques for au-
tomating schema-guided synthesis have been proposed, but they cater to a very limited schematic
of programs, and thus are limited in their applicability [97]. Schema-guided synthesis specialized to
the arithmetic domain has been proposed using a constraint-based solving methodology [62]. Our
technique in Chapter 4, if viewed as a schema-guided approach, formalizes the requirements for it
to work over any domain, as opposed to particular instances, e.g., linear arithmetic as considered
previously [62]. Additionally, while the specification of the program synthesis task is comparable
to these approaches, the satisfiability-based efficient solving methodology is novel in our approach.

8.2.2 Inductive Synthesis

Inductive synthesis is the approach of generalizing from instances to generate a program
that explains all instances or traces that meet a specification. The instances could be positive ones
that define valid behavior or counterexamples that eliminate invalid behavior.

Of particular note in this category is the work by Bodik and Solar-Lezama et. al. on the
Sketch system, which synthesizes from partial programs [246]. Their work has helped revive interest
in practical synthesis in recent years, while still having the human programmer provide the insight
behind the program in the shape of a “sketch” of the desired computation. The Sketch system
fills out integer holes, whose values may be difficult for the programmer, in a partial program
and as such is also a programming aid. Bodik, Solar-Lezama et. al. deserve significant credit for
designing a synthesis interface that software developers will be comfortable with. The approaches
we present in this dissertation derive much inspiration from their work and, in fact, both proof-
theoretic synthesis and PINS go through intermediate representations that resemble a sketch of the
desired program, albeit with holes that are filled in by full expressions rather than just integers.

Combinatorial sketching does not use a mathematical formulation, but instead uses another,
unoptimized program as the specification of the desired computation [246, 247, 248]. A model
checker eliminates invalid candidate programs—by matching the candidates behavior against the
that of the unoptimized program—that the synthesizer enumerates heuristically using a guided
search. Loops are handled incompletely, by unrolling or by using a predefined skeleton. Arguably,
software developers are more comfortable with partial programs with holes than with formal spec-
ifications, and this was the motivating factor behind the design of the Sketch system. While such a

148

design choice makes program synthesis accessible, which is very important, but at the same time,
it limits the technical machinery that can be applied to “resolve” the sketch. In particular, the
lack of a formal specification of the intended behavior means that proof-theoretic synthesis cannot
directly be applied to solving sketches. On the other hand, PINS can certainly be used to resolve
sketches—possibly more efficiently than using a counterexample generating model checker or even
combined with the existing solution strategy.

Recently, a novel approach for synthesis of bit vector programs using input-output examples
has been proposed [153]. The techniques assumes the presence of an oracle, e.g., a human user,
that is queried by the system for the validity of an input-output pair. The information from the
oracle is used to guide the search and prune it appropriately until only a single solution remains.
In the context of using traces to prune the search space, this approach is similar to Sketching (that
uses concrete counterexample traces), and to a lesser degree to PINS (that uses symbolic traces).
It is different from Sketching in that it can use both positive and negative instances to prune the
search space. It is different from PINS in that it works for acyclic program fragments while PINS

automatically decides which traces to explore in a program with loops.

8.2.3 A Liberal View of Synthesis

Deriving programs with proofs Dijkstra [93], Gries [131], and Wirth [270] advocated that pro-
grammers write programs that are correct by construction by manually developing the proof of
correctness alongside the program. Because techniques for efficient invariant inference were un-
available in the past, synthesis was considered intractable. For instance, Dijkstra wrote, “I should
[sic] like to stress that by using the verb ‘to derive’ I do not intend to suggest any form of automa-
tism [sic], nor to underestimate the amount of mathematical invention involved in all non-trivial
programming. (On the contrary!) But I do suggest the constructive approach sketched in this
paper as an accompanying justification of his inventions, as a tool to check during the process of
invention that he is not led astray, as a reliable and inspiring guide.” [92] While automation was
unavailable when Dijkstra wrote this, theoretical and engineering developments since then indicate
that synthesizing programs and proofs simultaneously may be possible.

Extracting program from proofs The semantics of program loops is related to mathematical in-
duction. Therefore, an inductive proof of the theorem induced by a program specification can be
used to extract a program [196]. Using significant human input, theorems proved interactively in
the Coq have a computational analog that can be extracted [25]. The difficulty is that the theorem
is of the whole program, and proves that an output exists for the specification. Such a theorem
is much more difficult than the simple theorem proving queries generated by the verification tool.
Additionally, it is hard to generate good code since the notion of a good proof is hard to define.

Model checking-based synthesis of reactive systems Perhaps the most directly related work on fully
automatic program synthesis are the proposals from the model checking community for automatic
synthesis of reactive systems. See Moshe Vardi’s slides for an overview [260]. Here synthesis is
interpreted as the realizability of an linear time logic (LTL) specification of the system. While it has
been shown that synthesis in this manner is decidable, the complexity is doubly exponential [218].
(One exponent comes from the translation of the specification to a Büchi automata, and the
second comes from determinization.) Since these results were discovered, significant effort has been
spent on optimizing constructions [157]. For limited classes of systems, e.g., supervisory controller
synthesis [226], and controller synthesis to timed systems [7], linear time results were shown. While
these results show promise for the case of circuit synthesis (the synchronous case), they do not
directly translate to programs (the asynchronous case). A reduction from the asynchronous to
the synchronous case incurs unacceptable exponential blowup [219]. Recent work in the domain
attempts to both over-approximate and at the same time heuristically underapproximate to infer
the realizability of the specification.

149

Hardware synthesis Synthesizing circuits is a theoretically easier, but still very challenging, task
compared to program synthesis. Circuit synthesis has also been explored more deeply. First
described as Church’s problem [56], it has more recently been addressed in the model checking
community with mixed success [35, 37]. Practical tools that can synthesize Verilog descriptions
from specifications have been built [158, 197]. Due the lack of loops, the hardware synthesis problem
does not encounter the hurdles that we had to overcome. The work presented in this dissertation
has different technical challenges and so we defer giving a more detailed account of work on
hardware synthesis, but refer the reader to discussions elsewhere on Church’s problem [257], and
on hardware synthesis [171, 79, 243].

Program repair and game-based synthesis Synthesis can be viewed as a game. The idea is to
define to a game between the environment and the synthesizer where the winning strategy for
the synthesizer corresponds to the synthesized program [159]. Henzinger et. al. have explored
quantitative synthesis, where instead of asking only whether a program meets the specification,
they also ask how close is its behavior to the specification [36]. Such an approach has been applied
to the synthesis of robust systems [38], for fault-localization and fixing [156], and to C programs
using predicate abstraction [132].

Deriving inverses as domain-specific synthesis Previous strategies for deriving program inverses
can be categorized into two classes. The first are strategies that require the complete proof for
the original program (conceptually a proof of injectivity), from which they provide proof rules to
syntactically construct the inverse [90, 55, 131, 102]. However, this approach was proposed in the
context of manually deriving the inverse for small programs, and we believe it is unlikely to scale
to larger programs or to be amenable to automation. The second are grammar-based strategies
that show that if the output of the original can be parsed using a deterministic grammar, then
that approximates the original computation and can be used to derive the inverse [120, 273]. The
limitation of this technique is that grammar-based approaches need to work with unambiguous,
decidable grammars, which for all but the most trivial benchmarks is not possible.

Automatic programming The artificial intelligence community has explored automatic program-
ming which resembles program synthesis. Approaches to automatic programming typically do
not attempt to generate the program, but rather assemble it intelligently using already-existing
components. Systems that follow a deductive methodology to such assembly include a genetic
programming-based approach for composing abstract components using views (mappings between
concrete types and abstract types) [213], an approach constructing astronomical data-manipulating
programs [252], and even question answering [265], all reusing underlying domain-specific compo-
nents. Systems also exist that follow a more inductive approach by generalizing from input-output
examples [188, 80]. These are a natural fit for the kinds of techniques, e.g., those that infer expla-
nations for a given set of data points, available in machine learning and the artificial intelligence
community. Systems in this category include tools that can synthesize certain LISP programs [254],
language-independent extensions [168, 237, 167], and logic programs [116, 114].

Simultaneous proof and program refinement When we fail to prove a property for a given program
under a given abstraction, we refine the abstraction and try again, e.g., in model checking using
counterexample guided abstraction refinement (CEGAR) [60, 58], or the same done lazily [149], or
in an abstract interpretation framework [134]. Vechev, Yahav, and Yorsh propose an approach that
refines the program in addition to the proof to synthesize both simultaneously [261]. They address
the problem in the context of synthesizing synchronization, but the idea has applicability to general
synthesis as well. While promising, refining the program simultaneously has the disadvantage of
removing the monotonic progression that proof refinement implicitly contains. A careful choice is
required in picking whether to refine the abstraction or the program when the verification fails for
the current program and abstraction.

150

Synthesizing concurrency Concurrent programs are notoriously hard to design, and thus are a
very promising target for automatic synthesis. Clarke and Emerson’s seminal work on model
checking was in fact proposed as a means of synthesizing synchronization skeletons [59]. From
the same community, Pnueli and Rosner also addressed the problem of synthesizing distributed
reactive systems from LTL specifications [216].

Vechev et. al. developed CGCExplorer [263, 264] for automatically exploring the space
of concurrent garbage collectors and automatically synthesizing provably correct versions. They
later extended it to a system called Paraglide for general synthesis [262]. Paraglide utilizes a model
checker to validate candidate programs, much like the counterexample-guided inductive synthesis
solution strategy for Sketching by Solar-Lezama et. al. [247]. Notably, Solar-Lezama’s work also
addresses the problem of synthesizing concurrent data structures.

151

Chapter 9

Conclusion

“What is the use of a new-born infant?”

— Benjamin Franklin1

We set out to show that we can build expressive and efficient techniques for program reason-
ing and program synthesis by encoding the underlying inference tasks as solutions to satisfiability
instances. Reducing these problems to satisfiability allows us to leverage the engineering advances
in current SAT and SMT solvers to build powerful program reasoning and synthesis tools. We
have shown that it is possible to restrict attention to particular classes of proofs and programs
(through templates) and to be able to automatically reason about and synthesize programs in
those restricted classes.

We described algorithms that can reduce programming analysis problems to satisfiability in-
stances over linear arithmetic and predicate abstraction. We have shown that using a satisfiability-
based approach we can infer not only expressive invariants for verification, but also weakest pre-
and strongest postconditions. Being able to infer expressive invariants will allow developers to
build certifiably correct software. Being able to infer pre- and postconditions will allow developers
to able to use and provide formal specifications of their software.

We have also shown how program synthesis can be viewed as generalized verification, allow-
ing us to use the verifiers we developed for reasoning as synthesizers. We introduced the notion
of a scaffold as a synthesis specification from which novel programs can be synthesized. A scaffold
specifies a program as a template of its control flow, domain of expressions that appear in the
program, and constraints on resources available. Using this approach, we envision that developers
can delegate the task of building critical fragments of their codebases to a synthesizer that will
automatically generate verified fragments that are guaranteed to be correct.

Lastly, we also showed how to construct a synthesizer that is inspired by testing. We leverage
the core solving technology we developed for reasoning, and using symbolic traces as proxies for
verification conditions, we show that we can synthesize programs by exploring a sufficient number
of relevant paths through a template program. Just as we can view testing as an approximation
to formal verification, this pragmatic synthesis approach can be viewed as using symbolic testing
to generate programs with approximate guarantees.

Going forward, we envision that we can build on the foundations laid in this dissertation to
develop techniques that can make programming easier, if not virtually redundant. Programming
will be made easier by automatic and mechanized reasoning about programs. Tools will be able to
automatically verify the correctness of programs, and for erroneous programs give the programmer
the weakest conditions under which it fails. These tools will be able to automatically infer rele-
vant pre- and postconditions that can be used as specifications or interfaces against which other
components can be built. The task of programming will be reduced through automatic program
synthesis. Programmers will write only part of the software, while the system will generate the
provably-correct completion. Additionally, automatic program synthesis also holds the potential
to generate new and novel algorithms.

1When asked what was the use of a balloon, while he was the American Plenipotentiary to France; early 1780s.

152

Appendix A

Correctness of Satisfiability-based
Algorithms

A.1 Linear Arithmetic: Correctness of Precondition Infer-
ence

Lemma A.1 (Nc = Immediately weaker neighbors) For all relations I ′ that are weaker than
I, there is some relation I ′′ ∈ Nc(I) such that I ⇒ I ′′ ⇒ I ′.

Proof: Suppose not, i.e., ∃I ′ weaker than I such that 6 ∃I ′′ ∈ Nc(I) such that I ⇒ I ′′ ⇒ I ′.
We first assume that the number of non-redundant conjuncts in both I and I ′ is the same.
This assumption is valid because only a finite number of conjuncts (specified by the template)
are permitted for the relations in the system. Otherwise it is possible to go a more expressive
domain of relations and obtain weaker relations. Such an example is shown in Figure A.1: If
both e1 + 1

c e3 and e1 + 1
c e2 can be added to the system then certainly a weaker relation can be

constructed for which there is no element in Nc that is strictly stronger.

Then, without loss of generality, we can assume that I ′ is weaker only in the first conjunct
(because such a relation is stronger than others with more conjuncts weaker than the corre-
sponding conjunct in I). Thus I ′′ is obtained by weakening the first conjunct e1 ≥ 0 in I by a
small amount. This can be done in two ways: either by adding an infinitesimally small constant
δ to e1 or by rotating e1 by an infinitesimally small amount δ along the intersection of e1 and
el. By assumption we know that 6 ∃I ′′ ∈ Nc(I) such that I ′′ ⇒ I ′, and if I ′ is obtained by adding
a small constant, then δ < 1

c , which leads to a contradiction since 1
c is the smallest constant

expressible in the system. On the other hand, if I ′ is obtained by an infinitesimally small
rotation then the smallest rotation possible is lim

ε→0
e1 + εel, which we approximate by e1 + 1

c el.

Again, if the rotation by δ is smaller, then δ < 1
c , which again leads to a contradiction.

�

e1

e2

e4

e1 + 1
c
e2

e1 + 1
c
e3

e3

Figure A.1: Importance of staying within templates

153

Using the proof neighborhood N we will prove that, for program points not inside loops, the
maximally weak preconditions (i.e., pointwise-weakest relations) for straight line fragments can be
computed without iteration using locally pointwise-weakest relations. The proof makes use of a
notion of the consistency of a relation with respect to certain others, as we defined below.

Definition A.1 ((I1, . . . , Ik)-consistent) A relation I, which is a conjunction of inequalities, is
called (I1, . . . , Ik)-consistent if I ⇒ Ii (or equivalently, I ∧ ¬Ii is unsatisfiable) for all 1 ≤ i ≤ k.

Now we relate the definition above to the proof neighborhood Nc in the following lemma,
and use it to connect pointwise-weakest relations and locally pointwise-relations in the theorem
that follows.

Lemma A.2 Let I1, . . . , Im be some given conjunctions of inequalities. Let I be some conjunc-
tion of inequalities that is (I1, . . . , Im)-consistent. I is the weakest conjunctive relation that is
(I1, . . . , Im)-consistent iff for all I ′′ ∈ Nc(I), it is the case that I ′′ ∧ ¬Ij is satisfiable for some
1 ≤ j ≤ m.

Proof: The forward direction of the lemma is trivial. If I is the weakest relation that is
(I1, . . . , Im)-consistent then there cannot exist a strictly weaker relation I ′′ that is (I1, . . . , Im)-
consistent. Since all I ′′ ∈ Nc(I) are strictly weaker it has to be the case that I ′′∧¬Ij is satisfiable
for some 1 ≤ j ≤ m.

We now show the reverse the direction of the lemma. From Lemma A.1 we know that for all
relations I ′ weaker than I it is the case that ∃I ′′ ∈ Nc(I) such that I ⇒ I ′′ ⇒ I ′. Let I ′ be the
given weaker relation under consideration, and let I ′′ be a relation in Nc(I) such that I ′′ ⇒ I ′.
Also, let u be the index for which I ′′∧¬Iu is satisfiable. Since I ′′ ⇒ I ′ it has to be the case that
I ′ ∧ ¬Iu is also satisfiable. And therefore the weaker relation I ′ is not (I1, . . . , Im)-consistent.

�

The neighborhood structure Nc has the following interesting property, which implies that no
iteration is required for obtaining a weakest relation at a cut-point that lies outside any loop.

Theorem A.1 Let π be a program point that does not lie inside any loop. Then, any locally
pointwise-weakest relation (with respect to the neighborhood structure Nc) at π is also a pointwise-
weakest relation at π.

Proof: Let I be a locally pointwise-weakest relation with respect to Nc at π. Let m be the
number of paths to successor cut-points of π and let the weakest preconditions of the paths (as
defined in Section 2.2.1 for paths) corresponding to them be I1, . . . , Im (i.e., ω(pi,j , Iπj), where
πj is the jth successor cut-point and pi,j is the ith path connecting π and πj). The program
verification condition (Eq. 2.1) dictates that I ⇒ Ii for all 1 ≤ i ≤ m, i.e., I is (I1, . . . , Im)-
consistent. If I is also locally pointwise-weakest then that means that for all I ′′ ∈ Nc(I) it is
the case that I ′′∧¬Ij for some 1 ≤ j ≤ m. Therefore, from Lemma A.2, we know that I is also
the weakest relation that is (I1, . . . , Im)-consistent, which implies that I is a pointwise-weakest
relation at π.

�

Geometric Interpretation Lemma A.2 and Theorem A.1, and their proofs, have a nice geometric
interpretation. The task of finding a pointwise-weakest relation I at a program point outside any
loop can be shown equivalent to the task of finding the union of disjoint maximal convex regions
that do not intersect with a given set of convex regions. Lemma A.2 implies that any convex
region that does not intersect with a given set of convex regions is maximal iff moving any of
its hyper-planes leads to an intersection with one of the convex regions from the given set. The
interesting moves of a hyperplane involve either translation parallel to itself, or rotation along the
intersection with another hyper-plane.

154

A.2 Linear Arithmetic: Refined neighborhood structure
Nc,π

The neighborhood structure Nc defined in Section 2.4.1, and used above, works well in
practice. For sake of completeness we describe below a refined neighborhood structure Nc,π that
works better in some cases.

Refined neighborhood structure Nc,π The neighborhood structure Nc defined above works well for
two cases: (a) deducing pointwise-weakest relations at cut-points that are not inside any loop (b)
deducing pointwise-weakest relations in which the inequalities are independent of each other, i.e.,
a small change in one of the inequalities does not require a change in any other inequality for
the relation to remain consistent. The two cases described above cover the majority of cases in
practice. In particular, they apply to the difficult benchmarks we experimented over, and also to
the independently inductive inequalities addressed in previous work (e.g., [63, 220]). However, for
sake of completeness, we describe another neighborhood structure Nc,π that works better for cases
other than (a) or (b).

We have already seen an example that violates (a) in Figure 2.7. The presence of the local
minima forces us to iterate to obtain the global weakest precondition. An example of case (b)
requires that the relation have inequalities that are dependent on each other. For instance, this
would be the case when an equality expression x = c is represented in terms of two inequalities
(x ≤ c) ∧ (x ≥ c). The neighborhood structure Nc,π is a refinement of Nc, i.e., Nc,π reduces to Nc
for the two cases described above.

For any relation I, Nc(I) includes all relations that are obtained from I by a small weakening
of one of its inequalities. In contrast, the Nc,π(I) includes all those inequalities that are obtained
from I by a small weakening of one of the independent inequalities and an appropriate weakening
of the dependent inequalities. Since we do not know what these dependences are, one way to
construct such neighbors is to find a satisfying solution to the original system of constraints in
which the independent inequality is weakened slightly, and the independent unknown constants
are forced to be same as before. An unknown constant d in a template relation I is dependent on
an inequality in I at a program point π if changing the inequality in (any consistent solution to)
I requires changing the constant d to obtain another consistent solution.

In practice, use of neighborhood structure Nc,π requires a small constant number of iterations
to obtain a pointwise-weakest relation by iterating over locally pointwise-weakest relations.

A.3 Predicate Abstraction: Correctness of Optimal Solu-
tion Computation

Definition A.2 (Negatively-optimal solution) Let φ be a formula with both positive and neg-
ative unknowns. Let P and N denote the set of positive and negative variables in φ, respectively,
and let S|P and S|N denote the restriction of the solution to the positive and negative maps,
respectively. Then a solution S is negatively-optimal if S|N is an optimal solution for φ[S|P].

Lemma A.3 (Modifying solutions (A)) If S is a solution to a formula φ, then so is S′, where
S′ is obtained from S by either taking a subsets of the positive assignments, or supersets of the
negative assignments. Formally, let V be the set of all unknown in φ, and let S be a solution to φ.
Then S′ is also a solution if it is the case that ∀ρi∈V S′[ρi] ⊆ S[ρi] ∧ ∀ηi∈V S′[ηi] ⊇ S[ηi].

Proof: The proof follows directly from the definition of positive and negative variables in a
formula φ. In particular, recall that if v is a positive unknown in φ and let Q1, Q2 ⊆ Q(v), then

∀S,Q1, Q2 : (Q1 ⇒ Q2) ⇒ (φS[v 7→ Q1]⇒ φS[v 7→ Q2])

For the purposes of this lemma, we have Q1 is S[ρ] and Q2 is S′[ρ], i.e., we have S′[ρ] ⊆ S[ρ]
and so Q1 ⇒ Q2. Therefore, we know that φX[S[ρ]]⇒ φX[S′[ρ]] for any positive unknown ρ,

155

and where X is an assignment to the remaining unknowns. By a similar argument, we know
that φX ′[S[η]]⇒ φX ′[S′[η]] for any negative unknown η. This means that φ[S]⇒ φ[S′]. Since
S and S′ map each unknown variable to a predicate set, and from the definition of S being a
solution, we know that φ[S] is true. Then for the implication to hold, we have φ[S′] is true too.

�

Lemma A.4 (Modifying solutions (B)) Let S− be a negatively-optimal solution for φ. Let
S−extra be identical to S− except that S−[ρ] ⊆ S−extra[ρ] for some positive unknown ρ. Then if
S−extra is also a solution to φ, then S−extra is negatively-optimal too.

Proof: Again, from the definition of a positive variable ρ, we know that for Q1, Q2 ⊆ Q(v)

∀S,Q1, Q2 : (Q1 ⇒ Q2) ⇒ (φS[v 7→ Q1]⇒ φS[v 7→ Q2])

For the purposes of this lemma, we haveQ1 is S−extra[ρ] andQ2 is S−[ρ]. Therefore, we know that
φX[S−extra[ρ]] ⇒ φX[S−[ρ]], where X is an assignment to the remaining unknowns as before.
Since all the other positive unknowns are identically assigned, we have that φX ′[S−extra|P] ⇒
φX ′[S−|P], where X ′ is some assignment to the negative unknowns. But we know that S−

is negatively-optimal for φ, i.e., X ′ is optimal for φ[S−|P], which by definition means that
removing any predicate from any of the maps in X ′ makes S− not a solution. (Note that S− is
X ′ ∪ S−|P .) It may very well be that S−extra is not a solution, but if it is then for any X ′′ that
is strictly weaker than X ′ leads to φX ′′[S−|P] being false. Then because of the implication
we just derived, it also means that X ′′ is not a solution for φ[S−extra|P]. Consequently, S−extra
(= X ′ ∪ S−extra|N) is also negatively-optimal.

�

We first prove a few auxiliary lemmas about the properties of Merge and MakeOptimal.
Implicit in the definitions of Merge and MakeOptimal is the assumption that right before returning
the sanitize their solutions, i.e., add any predicate from Q(ρ) that is implied by σ[ρ] and removing
any predicate from σ[η] that is implied by the remaining. This allows us to treat superset as
the implication relation, and treat predicates as independent of each other. We assume that the
predicate sets contain at least one true for positives, essentially the empty set, and they contain
false for the negatives, or some set of predicates that can imply false.

Consider a formula φ and its positive and negative unknowns. Each of the positive unknowns
defines its own space, and each predicate assignment to the unknown defines a half-hyperplane in
that space. The set S (Line 8 in OptimalSolutions) as constructed, contains for all possible
single hyperplane combinations (one from each space) the weakest assignments to the negatives
(i.e, negatively optimal). Let us call each of the elements of S a basis.

Definition A.3 (Basis set) Given a map σ = {ρi 7→ Qi}i=1..n ∪ {ηi 7→ Qi}i=1..m, let us call
σ|+ve as the first set of maps (for the positive unknowns) and σ|−ve the second set of maps (for
the negative unknowns).

Let C = σ[ρ1]×σ[ρ2]× . .×σ[ρn] denote the set of all combinations of the positive maps. We
call a collection of basis elements X(⊂ S) a basis set for σ, if for each c ∈ C, the map formed by c
augmented with σ|−ve has an element in x ∈ X such that (1) x|+ve = c|+ve, and (2) c|−ve ⇒ x|−ve.

Lemma A.5 Every solution has a basis set.

Proof: Let σ be the solution. Consider the combinations {ci}i of the positives σ|+ve. Since
each is a pointwise subset of σ|+ve, by Lemma A.3, we know that each combination (with
identical negatives), i.e., σi(= ci ∪ σ|−ve), is also a solution. Now consider an individual σi
and its positives σi|+ve. From the property of OptimalNegativeSolutions (Corollary A.1) in
constructing negatively-optimal solutions, we know that the negatives σi|−ve of the solution
have to be strictly stronger, i.e., a superset, of the basis with the positives equal to σ|+ve.

156

Therefore, σ has a basis set.
�

The reverse, that a set of basis elements can be lifted to a solution, also holds.

Lemma A.6 (Lifting basis elements) A map σ is a solution if it has a basis set.

Proof: Let X(⊆ S) be a set of basis elements. We will show that σ′
.
=]x∈Xx is a solution.

Then if X is a basis set for σ, then by Lemma A.5 we know that σ is just σ′ with additional
elements in the negatives. Then, by Lemma A.3 we know that if σ′ is a solution, then so is σ.

To show that σ′
.
=]x∈Xx is a solution, we present a geometric proof. Consider the assignment

pos1
.
= {ρ1 7→ {q}, ρ2 7→ {q′}, . . , ρn 7→ {q′′}}, where q ∈ Q(ρ1), q′ ∈ Q(ρ2), . . , q′′ ∈ Q(ρn)

to the positive unknowns in a basis element x. This assignment defines a half-space in an
n-dimensional space. Each positive unknown defines a dimension and a predicate induces a
half-space. Let us say that pos2 is another assignment to the positives. Their disjoint union
pos1]pos2 corresponds to the intersection of the half-spaces. Corresponding to each of pos1 and
pos2 we have negatively-optimal solutions neg1 and neg2, respectively, that themselves define
half-spaces in the dimensions defined by the negative unknowns. We now compare the negative
solutions for the formulae φ[pos1] and φ[pos1] pos2], where φ is the original formula. It has to
be the case that for comparable solutions the negatively-optimal solutions to φ[pos1] pos2] are
strictly stronger than φ[pos1] (and also φ[pos2]). In particular, one solution to the negatives in
φ[pos1] pos2] would be neg1]neg2. By induction, this argument generalizes to disjoint unions
of multiple solutions the result of which is guaranteed to be a solution.

�

Lemma A.7 (Merge) The procedure Merge returns the join σ1] σ2 of two maps σ1 and σ2, if
the join is a valid solution, else it indicates failure by returning ⊥. Here] indicates the piecewise
union of two maps.

Proof: The first part, i.e, it return the join] if it does not fail, is trivial from the definition
of the procedure. We just need to show that if it does not fail, then the returned value is a
valid solution.

A corollary to Lemma A.3 is that, compared to a solution X, any X ′ that is weaker in the
positive or stronger in the negatives is also a solution. (By simple translation of the superset
relation to implication.) The set T is a restriction of the basis set to those whose negatives
are weaker than the current join. Thus since T contains only those basis whose negatives are
weaker, the X ′ we have is stronger and will be a solution if the positives are kept unchanged.

Lastly, checking individually for positives, within T (which guarantees solutions consistent for
the negatives), we make sure that every combination of positives had a valid negative map,
ensuring that their accumulation is also a valid solution (Lemma A.5).

�

Lemma A.8 Let σ′ be in S with σ′|+ve = {ρk 7→ p} ∪ {ρi 7→ {true}}i 6=k and σ] {ρk 7→ {p}} is a
solution, and σ|−ve ⇒ σ′|−ve, then calling the procedure Merge with σ, σ′ and S does not fail.

Proof: From σ|−ve ⇒ σ′|−ve we know that (σ] σ′)|−ve ⇒ σ′|−ve. We also have from
assumption that σ′ ∈ S and therefore σ′ is in T (Line 3). In the join, the positives are
σ|+ve] {ρk 7→ {p} and the negatives are exactly as strong as σ|−ve.

Because σ] {ρk 7→ {p}} is a solution, we know that some basis set exists for the enumerated
combinations of the positives, and hence the conditional on Line 4 evaluates to true. Therefore
the procedure does not fail (Lemma A.5).

�

157

Lemma A.9 If σ] {ρk 7→ {p}} is a solution to φ (whose negative unknowns are N), then the
negatively-optimal solution to φ[ρk 7→ {p}][ρi 7→ {true}]i 6=k is a subset of σ|N .

Proof: Again, from the definition of a positive variable ρ, we know that for Q1, Q2 ⊆ Q(ρ)

∀S,Q1, Q2 : (Q1 ⇒ Q2) ⇒ (φS[ρ 7→ Q1]⇒ φS[ρ 7→ Q2])

For the purposes of this lemma, we have Q1 is σ|P]{ρk 7→ {p}} and Q2 is {ρi 7→ {true}}i6=k ∪
{ρk 7→ {p}}. Therefore, we know that φX[σ|P]{ρk 7→ {p}}]⇒ φX[{ρi 7→ {true}}i6=k ∪{ρk 7→
{p}}], where X is an assignment to the remaining (negative) unknowns. If X is the negatively-
optimal solution, then the consequent of the implication is true under it and for every X ′ ⊂ X
(pairwise subset) is it false. That implies that for every X ′ that is a subset the antecedent also
has to be false, i.e., it would not form a valid solution. Therefore σ|N has to be a superset of
the negatively-optimal solution X.

�

Lemma A.10 (MakeOptimal) The MakeOptimal procedure has the property that corresponding to
a negatively-optimal σ, the procedure returns an optimal solution.

Proof: We will show that three invariants hold about the loop from Lines 2–4 in MakeOptimal:
(1) no extraneous predicates are added to the negative solutions, i.e., the negative solutions
remain maximally-weak, (2) σ is a solution in every iteration, and (3) on termination, there is
no predicate that can be added to σ while still ensuring that it is a solution. Using invariants (1)
and (2) and Lemma A.4 we get the additional invariant that the solution σ is negatively-optimal
in every iteration. Adding (3), we get that, at termination, the solution is also optimal.

We now show that the three properties hold of the loop. For (1), notice that the loop only calls
Merge with an element from set T , which in turn only contains solutions that are pointwise, at
all negative unknowns, weaker than σ. Therefore, the join] of a set weaker than itself, yields
the same set, and therefore the negatives remain maximally-weak. For (2), notice that the loop
leaves σ unchanged if the merge failed, which happens if the merged result is not a solution
(Lemma A.7), and therefore σ is only updated with valid solutions.

For (3), we need a little bit more effort. Suppose there exists a predicate p, not already there,
that can be added to some positive unknown ρk’s map, while the result σ] {ρk 7→ {p}} still
being a solution. If that is the case, then by Lemma A.3 we know that N]P is also a solution,
where P is {ρk 7→ {p}}]{ρi 7→ {true}}i 6=k, and N is σ but restricted to the negative unknowns.
(true is equivalent to the empty set, i.e., a subset of every set.) Also, let Nstart be σ at the
start of the loop restricted to the negative unknowns. Note that by (1), N is neither weaker or
stronger than Nstart.

Now notice that the negatively-optimal map N ′ corresponding to φ[P] has to be a subset of
N or else σ] {ρk 7→ {p}} cannot be a solution (by Lemma A.9). Being a subset of N means
that it is at least as weak as N . From the above observation about Nstart it also means that
N ′ is at least as weak as Nstart too. If that is the case, then N ′] P must have been in T and
therefore must have been merged with σ at some point. Since the map for ρk does not contain
p, it implies that the merge did not yield a valid solution. But this contradicts Lemma A.8,
which states that a merge over σ′ (= N ′] P and ∈ S) and σ does not fail. Therefore, no such
predicate can exist.

�

Before proving the general lemma about the correctness of OptimalSolutions (Lemma A.3),
we prove a restricted version first. The theorems make use of the correctness of OptimalNegativeSolutions
as described by Theorem A.13.

158

Theorem A.2 (Correctness of OptimalSolutions for restricted formulae) Let φ be a for-
mula with positive and negative unknowns with the positive and negative unknowns uncorrelated in
the following manner. If S is an optimal solution to φ, then any S′ with positive variables assigned
subsets (compared to S’s positives) is only a solution if the negatives are assigned supersets (as
compared S’s negatives).

Let {vi}i is the set of all unknown variables in φ and let S be the set of all possible assign-
ments to vi’s, i.e., 2Q(v1) × 2Q(v2) × 2Q(vn). Then the procedure OptimalSolutions(φ,Q) returns
the set

{S | S ∈ S and S is an optimal solution for φ with respect to Q}

Proof: For the sake of brevity in the proof, we assume that φ contains one positive ρ and
one negative unknown η. The proof works exactly as is for the case of multiples, with required

conjunctions, unions, added in appropriate places. Also, let us use the notation

{
p1 . . pn
q1 . . qm

}
to denote the solution map {ρ 7→ {p1 . . pn}, η 7→ {q1 . . qm}}, where each pi ∈ Q(ρ) and each
qi ∈ Q(η). We prove that for a solution S is in the output set of OptimalSolutions iff it is
optimal. We prove each direction in turn:

“⇒” From Corollary A.1 (described later), we know that the calls to the procedure OptimalNegativeSolutions
produce negatively-optimal solutions. From the optimality of the output values of MakeOptimal
(Lemma A.10), all solutions in R after Line 8 are optimal. The only other additions to R
are again outputs of MakeOptimal (added through the call to Saturate on Line 9), and
consequently, at the end R only contains solutions that are optimal.

“⇐” Let

{
p1 . . pn
q1 . . qm

}
be the optimal solution to φ. Then we know from Lemma A.3 that{

p1

q1 . . qm, . . , q
′
m

}
,

{
p2

q1 . . qm, . . , q
′′
m

}
, . . ,

{
pn

q1 . . qm, . . , q
′′′
m

}
are therefore all solution too

(not optimal though), where each set of assignments to the negatives is a superset as indicated
by the q′m, q

′′
m, . . , q

′′′
m. Line 6 in the procedure accumulates optimal negative solutions for indi-

vidual predicates p1, p2, . . , pn. From Lemma A.13 (correctness of OptimalNegativeSolutions),
we know that the outputs will be the minimal sets to the negative unknown. By virtue of{
p1 . . pn
q1 . . qm

}
being an optimal solution and the uncorrelated φ we consider in this theorem,

this means that the output at Line 6 will be exactly

{
pi

q1 . . qm

}
.

That means that all of

{
p1

q1 . . qm

}
,

{
p2

q1 . . qm

}
, . . ,

{
pn

q1 . . qm

}
are in the solution set

S right before line 8 in OptimalSolutions. From Lemma A.10, this implies that each

one of these elements in S will be lifted to

{
p1 . . pn
q1 . . qm

}
. Therefore the set R will contain{

p1 . . pn
q1 . . qm

}
after Line 8. Since the procedure Saturate (called on Line 9) does not delete

elements from R, this solution will be in the output of the procedure.

�

Lemma A.11 Let S, S′ be optimal solutions. The following hold separately: (a) if S|+ve ⊇ S′|+ve,
then S|−ve 6⊆ S′|−ve; (b) if S|−ve ⊆ S′|−ve, then S|+ve 6⊇ S′|+ve;

Proof: Both cases are similar and straightforward:

(a) Suppose not, i.e., S|−ve ⊆ S′|−ve. From Lemma A.3 we know that S|+ve ∪ S′|−ve is a
solution (as we are just adding some predicates to some negative assignment in the solution

159

σ2

σ1

Figure A.2: Illustrating the decomposition of the negative solution.

S = S|+ve ∪ S|−ve). But this contradicts the optimality of S′|+ve ∪ S′|−ve, i.e., that S′|+ve
contains as many predicates as possible.

(b) Suppose not, i.e., S|+ve ⊇ S′|+ve. From Lemma A.3 we know that S′|+ve ∪ S|−ve is a
solution (as we are just removing some predicates from some positive assignment in the
solution S = S|+ve ∪S|−ve). But this contradicts the optimality of S′|+ve ∪S′|−ve, i.e., that
S′|−ve contains as few predicates as possible.

�

Claim A.1 (Every solution can be split on the negatives) If σ is a solution then there ex-
ist σ1, σ2 solutions that are decompositions of σ, i.e., σ1|−ve∪σ2|−ve = σ|−ve and σ1|+ve∪σ2|+ve ⊇
σ|+ve.

Proof: We present a geometric proof as we did for Lemma A.6. Consider the assignment
neg1

.
= {η1 7→ {q11, q12, . .}, η2 7→ {q21, q22, . .}, . . , ηn 7→ {qn1, qn2, . .}}, where qij ∈ Q(ηi),

to the negative unknowns. This assignment defines an intersection of half-spaces in an n-
dimensional space. Each negative unknown defines a dimension and a predicate induces a
half-space. Multiple predicates induces an intersection of half-spaces. Let neg2 is the other
assignment to the negatives. Their disjoint union neg1] neg2 corresponds to the intersection
of the half-spaces. Corresponding to each of neg1 and neg2 we have optimal solutions pos1 and
pos2, respectively, that themselves define half-spaces in the dimensions defined by the positive
unknowns.

We now compare the optimal positive solutions for the formulae φ[neg1] and φ[neg1] neg2],
where φ is the original formula. It has to be the case that for comparable solutions the optimal
solutions to φ[neg1] neg2] are strictly stronger than φ[neg1] (and also φ[neg2]). In particular,
one solution to the negatives in φ[neg1] neg2] would be pos1] pos2. Additionally, since any
subset of the positives is also a solution, by Lemma A.3, we have that σ1|+ve] σ2|+ve ⊇ σ|+ve.

�

Example A.1 It is instructive to consider an example formula φ
.
= η ⇒ ρ. The one negative

unknown η defines a dimension and assignments of predicates define subspaces in that dimension, as
shown in Figure A.2. Now consider partial solution σ

.
= {η 7→ {−10 < x, x < 10,−5 < y, y < 5}},

σ1
.
= {η 7→ {−10 < x,−5 < y}} and σ2

.
= {η 7→ {x < 10, y < 5}}. Notice that the (ρ) solutions

to φ[σ|−ve] can include predicates implied by −10 < x < 10 ∧−5 < y < 5, while those to φ[σ1|−ve]
can only include those implied by −10 < x ∧ −5 < y. This entails that the former predicate map
can be stronger than the latter.

Lemma A.12 Let

{
p1 . . ps1
q1 . . qt1

}
,

{
p1 . . ps2
q1 . . qt2

}
,. . be optimal solutions in R, with ∀i : {q1, . . , qti} ⊆

{q1, . . , qm} and ∀i : {p1, . . , psi} ⊆ {p1, . . , pn}. Let X =

{
p1 . . pn
q1 . . qm

}
also be an optimal solution,

and let {p1, . . , pn} = ∪i{p1, . . , psi}. Then X ∈ Saturate(R,S).

160

Proof: From Lemma A.7 we know that the procedure Merge returns the disjoint union σ1]σ2

of its argument solutions σ1 and σ2, if σ1] σ2 is indeed a valid solution. Therefore, we just
need to show that there exists a decomposition of X as (((σ1] σ2)] σ3) . .] σn), such that
each subexpression is a valid solution. (Technically, the decomposition is lift(lift(lift(σ1]
σ2)] σ3) . .] σn), where lift indicates the augmenting of the positives in some σ to the
optimal through a call to MakeOptimal(σ, S). Additionally, we would need to worry about
early termination of the outermost loop in Saturate on Line 1 and the conditional on Line 4.
We defer these concerns until later.) This decomposition essentially means that there is a
binary tree (of two way splits, on both the positives and negatives) such that every node in the
tree is a valid solution.

We prove that such a binary tree exists by showing that every optimal solution can be decom-
posed into two solutions that are themselves optimal, i.e., for every σ there exists σ1, σ2 such
that σ = σ1] σ2 and all three are optimal. Suppose such a decomposition is not possible.
Since for the negatives any superset if always a solution, we consider the disjoint split of the
predicates in σ−ve into Na and Nb. If a decomposition is not possible then that implies that the
optimal positive solutions (which will have the maximal number of predicates they can have),
corresponding to every set of Na and Nb will not union up to σ+ve. For that to be the case, all
splits of σ−ve into Na and Nb, can have optimal positive solutions that at max union up to a
subset of σ+ve. But by Claim A.1, this means that σ cannot be a solution—contradiction.

�

Theorem A.3 (Correctness of OptimalSolutions) Let {vi}i is the set of all unknown vari-
ables in φ and let S be the set of all possible assignments to vi’s, i.e., 2Q(v1) × 2Q(v2) × 2Q(vn).
Then the procedure OptimalSolutions(φ,Q) returns the set

{S | S ∈ S and S is an optimal solution for φ with respect to Q}

Proof: We build on the proof for the restricted case (Theorem A.2). The proof of the forward
“⇒” direction remains identical to the restricted case. The reverse “⇐” direction needs more

work, since now the output at Line 6 may have solutions of the form

{
pi

q1 . . qt

}
, and the

following cases arise

• {q1, . . , qt} ⊆ {q1, . . , qm}: From Lemma A.10, we know that for each of the elements af-
ter Line 6, MakeOptimal returns an optimal solutions with the same negatives and aug-

mented positives. Since

{
pi

q1 . . qt

}
is optimally-negative, from Lemma A.10, we know that

MakeOptimal will lift each pi to the maximal number of predicates {p1 . . ps} that can occur.

Now, because both

{
p1 . . ps
q1 . . qt

}
and

{
p1 . . pn
q1 . . qm

}
are optimal solutions, by Lemma A.11

that {p1 . . ps} ⊆ {p1 . . pn}. Then by Lemma A.12, the theorem follows.

• {q1, . . , qm} ⊆ {q1, . . , qt}: By Lemma A.11 this case cannot arise as both

{
pi

q1 . . qt

}
and{

p1 . . pn
q1 . . qm

}
are optimal solutions.

• {q1, . . , qt} is orthogonal to {q1, . . , qm}: We leave this case as an exercise to the reader.

�

Lemma A.13 (Correctness of OptimalNegativeSolutions) Let {ηi}i is the set of all unknown
variables in φ−, a formula that contains only negative unknowns, and let S− be the set of all possible
assignments to ηi’s, i.e., 2Q(η1)×2Q(η2)×2Q(ηn). Then the procedure OptimalNegativeSolutions(φ−, Q)
returns the set S−opt = {S− | S− ∈ S− and S− is an optimal solution for φ− with respect to Q}.

161

Proof: The procedure OptimalNegativeSolutions searches top to bottom in a lattice ordered
by the subset relation, i.e., with S1 v S2 ⇐⇒ S1 ⊇ S2. (This ordering is more intuitive using
the implication relation, i.e. S1 v S2 ⇐⇒

(∧
s1∈S1

s1

)
⇒
(∧

s2∈S2
s2

)
) We prove that a

solution S− is in the returned set for the procedure iff it is in S−opt.

“⇒” By the enumeration over the lattice, i.e., construction, we know that the solution S− output
by the procedure has to be in S−. We just need to prove that it is optimal too. Suppose not,
then a solution S−1 with assignments one of which is a strict subset is also a solution. Such
a solution would be ordered above S− in the lattice, i.e. S− v S−1 . But since the procedure
does a top to bottom search, it would have encountered S−1 and deleted its subtree if S−1
was found to be a solution. But since the subtree was not deleted (because an element, S−,
from the subtree was output), we conclude that S−1 is not a solution. Contradiction.

“⇐” Since S− is in S−opt we know that it is in S− and is also optimal. It will be in the output of
the procedure if every element on every path from it to the root (>, i.e., the empty set) is
not a solution, i.e., every element that is a strict subset is not a solution. From the definition
of optimality, and that S− is optimal, we know that to be true. Hence S− is in the output
of the procedure.

�

The following is a direct corollary of the above lemma.

Corollary A.1 (Producing negatively-optimal solutions) A solution is in the output of OptimalNegativeSolutions
iff it is negatively-optimal.

A.4 Predicate Abstraction: Correctness of the Reduction
to SAT

We first show the boolean encoding for each individual verification condition is sound. The
proof relies on Lemma A.6 concerning the lifting of basis elements to solutions.

Lemma A.14 (Correctness of VC encoding) An assignment that satisfies the boolean for-
mula ψδ,τ1,τ2,σt (Eq. (3.7)) induces a map that is a solution to the verification condition corre-
sponding to δ, τ1, τ2, σt.

Proof: Let Sbool be some satisfying assignment to the variables bviq that appear in ψδ,τ1,τ2,σt .
Then we show that S = {vi 7→ {q | q ∈ Q(vi), Sbool[b

vi
q] = true}}i is a solution to, i.e., it satisfies,

the corresponding VC formulae. From the assumption that the predicate map for every positive
ρi contains the predicate true, the boolean assignment has at least one boolean bρiq assigned
true for some q. Since Eq. (3.7) is satisfied, we know that for each of the combinations of
the positives, the assignment has at least as many elements in the negatives such that the
corresponding basis element is a solution. This means that the corresponding map has a basis
set, and by Lemma A.6 we infer that the map is a solution to the verification condition.

�

Theorem A.4 (Correctness of SAT encoding) The boolean formula ψProg (from Eq. (3.8)) is
satisfiable iff there exists an invariant solution for program Prog over predicate-map Q.

Proof: We prove each direction, of ψProg is satisfiable ⇔ invariant solution exists, in turn:

⇒ If ψProg is satisfiable that implies that each conjunct in Eq. (3.8) is satisfied by some assign-
ment which in turn means that each conjunct in Eq. (3.7) is satisfied by the assignment.

162

Let Sbool be some satisfying assignment to the variables bviq that appear in ψProg. Then we
show that S = {vi 7→ {q | q ∈ Q(vi), Sbool[b

vi
q] = true}}i is an invariant solution, i.e., it

satisfies each of the VC formulae. By Lemma A.14, we know that any satisfying solution
to Eq. (3.7) induces a solution to the corresponding VC. Since Sbool simultaneously satisfies
all clauses generated through Eq. 3.7, it induces a map that simultaneously a solution all
VCs—therefore an invariant solution.

⇐ Let S = {vi 7→ Qi}i be the invariant solution. Then we show that the map Sbool = {bviq 7→
true | q ∈ Qi}i∪{bviq 7→ false | q ∈ Q(vi)\Qi}i is a satisfying assignment to ψProg. We show
that S individually satisfies each conjunct in Eq. (3.8) which in turn means that it satisfies
each conjunct in Eq. (3.7). From the presence of the predicate true in the predicate sets, we
know that each positive is assigned some predicate by the invariant solution.

Since S is an invariant solution, it satisfies each of the verification conditions of the program.
Consider the formula VC(〈τ1, δ, τ ′2〉). By Lemma A.5, we know that the solution S to the
formula has a basis set. By Definition A.3 we have that the basis set contains elements
whose positives are the (single-element) enumerations and the negatives are weaker than
those of S. Each element of the basis set satisfies the VC formula as well. The implications
in Eq. (3.7) encode exactly this basis set. It states that for each enumeration of the positives
(antecedent), at least one of the optimally-negative solutions be valid (consequent). Thus for
all positive enumerations in S the corresponding boolean indicators will be set to true and
we know that at least one disjunct in the consequent will be true for the induced assignment.

�

163

Appendix B

Code Listings

In this chapter, we list the verbatim inputs given to our tools. For the given inputs we also
list the outputs generated by the tools. For brevity, we present code listing for one example each
for VS3

LIA, VS
3
PA, proof-theoretic synthesis, and PINS.

B.1 Linear Arithmetic Invariant Inference

The input to VS3
LIA is a C program. The additional parameters specified to the tool are

integers for (1) the number of conjunctions inside each disjunction, and the number of disjunctions,
(2) the bit vector sizes used to represent constants, and coefficients, and additionally the total size
to be used to avoid overflow.

The tool outputs the invariants inferred to prove all assertions in the program. The inferred
values are integers for the constant terms and coefficients in the linear representation of the atom
facts in the invariant.

B.2 Predicate Abstraction Invariant Inference

Input to the tool

An example input, for quick sort’s inner loop in this case, to VS3
PA is shown below. The

tool infers values for the holes from the given predicate set. Templates for the invariants are also
specified with holes.

int main() {

char *a;

int n, pindex, pvalue, sindex, i, t;

assume(" n >= 1 ");

pvalue = a[pindex];

// swap(a[n-1], a[pindex])

t = a[n-1]; a[n-1] = a[pindex]; a[pindex] = t;

i = 0; sindex = 0;

while (i<n-1) {

if (a[i] <= pvalue) {

// swap(a[i], a[sindex])

t = a[i]; a[i] = a[sindex]; a[sindex] = t;

sindex++;

}

i++;

}

// swap(a[sindex], a[n-1])

t = a[sindex]; a[sindex] = a[n-1]; a[n-1] = t;

assert(" forall k:(k >= 0 && k <= sindex) => (a[k] <= pvalue)");

164

assert(" forall k:(k <= n-1 && k > sindex) => (a[k] > pvalue)");

return 0;

}

// Invariant templates:

templates :=

{[-]} #

{forall k: [-] => (a[k] > pvalue)} #

{forall k: [-] => (a[k] <= pvalue)}

// Candidate predicate set

predicates :=

k >= 0

k < i

k < n-1

k >= sindex

k < sindex

i <= n-1

i >= sindex

a[n-1] <= pvalue

Output of the tool

The invariant inferred for the loop in the above program is shown below.

{ i >= sindex && i <= n - 1 && a[n-1] <= pvalue }

{forall k: (k >= sindex && k < i && k < n-1) => (a[k] > pvalue)}

{forall k: (k >= 0 && k < i && k < sindex && k < n-1) => (a[k] <= pvalue)}

B.3 Proof-theoretic Synthesis

Input to the tool

An example input, for insertion sort in this case, to the proof-theoretic inference tool (wrap-
per around VS3

QA and VS3
AX) is an expanded scaffold shown below, where [−] denote holes. The

synthesizer infers values for the holes from the given predicate and expression sets. Templates
for the invariants are also specified with holes. The keyword ite takes three arguments and is
interpreted as an if-then-else construct.

int main() {

char *a,t,i,j,n;

i = [-];

while (i <= [-]) {

j = [-];

while (j >= [-]) {

if ([-])

{

// swap some two elements in the array ‘a’

t = a[[-]]; a[[-]] = a[[-]]; a[[-]] = t;

}

else break;

j--;

}

i++;

}

assert(" forall k: (0 <= k < n-1) => (a[k] <= a[k+1]) ");

165

return 0;

}

// Invariant templates:

templates :=

{ite:([-]),(a[j] <= a[j+2]),(true)} #

{forall k:[-] => (a[k] <= a[k+1])} #

{forall k:[-] => (a[k] <= a[k+1])}

// Predicate and expression sets:

predicates :=

j < i-1

j >= 0

j < 0

k >= 0

k < i

k < i - 1

k < j

k > j

a[j] > a[j+1]

expressions :=

0

1

j

j + 1

n - 1

i - 1

Output of the tool

The inferred program and the invariants (shown here in comments) for the above input are
shown below.

int main() {

char *a,t,i,j,n;

i = 1;

// Invariant inferred:

// forall k: (0 <= k < i-1) => (a[k] <= a[k+1])

while (i <= n-1) {

j = i-1;

// Invariant inferred:

// forall k: (j < k < i) => (a[k] <= a[k+1])

// forall k: (0 <= k < j) => (a[k] <= a[k+1])

// ite: (0 <=j<i-1 && a[j]>a[j+1]), (a[j]<=a[j+2]), (true) // ..(*1)

while (j >= 0) {

if (j >= 0 && a[j] > a[j+1]) // ..(*2)

{

// swap some elements in the array ‘a’

t = a[j]; a[j+1] = a[j]; a[j] = t;

}

else break;

j--;

}

i++;

166

}

assert(" forall k: (0 <= k < n-1) => (a[k] <= a[k+1]) ");

return 0;

}

Notice that for the inferred values:

(*1) The predicate a[j] > a[j + 1] in the ite guard is redundant.

(*2) The predicate j >= 0 in the conditional guard is redundant.

B.4 Path-based Inductive Synthesis

Input to the tool

An example input, for run length compression in this case, to PINS is the program to
be inverted shown below. Currently, the mining heuristics are run manually, and therefore the
flowgraph template for the inverse, and the predicate and expression sets are specified as inputs as
well. PINS populates the holes in the flowgraph template using the given predicate and expression
sets, yielding the inverse.

void main(int *A, int n) {

int *B,*C,i,j,r;

assume(" n >= 0 ");

i=0; j=0;

while (i<n) {

r=1;

while (i+1<n && A[i]==A[i+1]) {

r++; i++;

}

B[j]=A[i]; C[j]=r;

j++; i++;

}

}

void flowgraph-template(int *B, int *C, int j) {

int *A,x,y,s;

<y,x> = [-];

while ([-]) {

<s> = [-];

while ([-]) {

<y,s,A> = [-];

}

<x> = [-];

}

}

// The mode of composition, sequential (for invert) or parallel (for network).

MODE := "invert";

// The predicate set for guards

predicates :=

x < j

x >= j

s < 0

167

s > 0

// The expression sets for assignments

expressions :=

0 : int

C[x] : int

y : int

s - 1 : int

y + 1 : int

x + 1 : int

A : int*,

upd(A, y, B[x]) : int*

Output of the tool

The inferred program and the invariants (shown here in comments) for the above input are
shown below.

void inverse(int *B, int *C, int j) {

int x,y,s;

<y,x> = <0,0>;

while (x<j) {

<s> = <C[x]>;

while (s>0) {

<y,s,A> = <y+1,s-1,upd(A,y,B[x])>;

}

x = x+1;

}

}

168

Bibliography

[1] Phoenix. http://research.microsoft.com/Phoenix/.

[2] Modular verification of software components in c. IEEE Transactions on Software Engineer-
ing, 30(6):388–402, 2004.

[3] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter Hawkins.
An overview of the saturn project. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, pages 43–48,
New York, NY, USA, 2007. ACM.

[4] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs.
In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 1–11, New York, NY, USA, 1988. ACM.

[5] Andrew W. Appel. Modern compiler implementation in ML/Java/C. Cambridge University
Press, New York, NY, USA, 1997.

[6] Andrew W. Appel. SSA is functional programming. SIGPLAN Notices, 33(4):17–20, 1998.

[7] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. In Proceedings of the 5th IFAC Cconference on System Structure and Control
(SSC’98), pages 469–474. Elsevier Science, July 1998.

[8] David Aspinall and Marin Hofmann. Dependent types. In Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 10, pages 45–86. MIT Press,
2005.

[9] Ittai Balaban, Ariel Cohen, and Amir Pnueli. Ranking abstraction of recursive programs.
In Verification, Model Checking, and Abstract Interpretation: 7th International Conference,
(VMCAI), pages 267–281, 2006.

[10] Thomas Ball, Byron Cook, Satyaki Das, and Sriram K. Rajamani. Refining approximations
in software predicate abstraction. In TACAS’04: Tools and Algorithms for the Construction
and Analysis of Systems, pages 388–403, 2004.

[11] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Automatic pred-
icate abstraction of c programs. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, pages 203–213, New York,
NY, USA, 2001. ACM.

[12] Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Polymorphic predicate abstraction.
ACM Transactions on Programming Language Systems, 27(2):314–343, 2005.

[13] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian abstrac-
tion for model checking c programs. In TACAS 2001: Proceedings of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
268–283, London, UK, 2001. Springer-Verlag.

[14] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In Proceedings of the 7th International SPIN Workshop on SPIN Model Checking
and Software Verification, pages 113–130, London, UK, 2000. Springer-Verlag.

[15] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system software via
static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1–3, New York, NY, USA, 2002. ACM.

169

[16] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs 0002, and K. Rustan M.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In FMCO, pages
364–387, 2005.

[17] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming system:
An overview. In CASSIS, volume LNCS 3362. Springer, 2004.

[18] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Com-
petition. In 17th International Conference on Computer Aided Verification, pages 20–23.
Springer, 2005.

[19] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand
in sat modulo theories. In M. Hermann and A. Voronkov, editors, Proceedings of the 13th
International Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’06), Phnom Penh, Cambodia, volume 4246 of Lecture Notes in Computer Science,
pages 512–526. Springer, 2006.

[20] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2008.

[21] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns, editors,
CAV ’07: Proceedings of the 19th International Conference on Computer Aided Verification,
volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer-Verlag, July
2007. Berlin, Germany.

[22] D. Basin, Y. DeVille, P. Flener, A. Hamfelt, and J. F. NIlsson. Synthesis of programs in
computational logic. In Program Development in Computational Logic, Lecture Notes in
Computer Science LNCS 3049. Springer, 2004.

[23] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. In CSF ’08: Proceedings of the 2008
21st IEEE Computer Security Foundations Symposium, pages 17–32, Washington, DC, USA,
2008. IEEE Computer Society.

[24] Josh Berdine, Aziem Chawdhary, Byron Cook, Dino Distefano, and Peter W. O’Hearn.
Variance analyses from invariance analyses. In POPL ’07: Proceedings of the 34th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 211–224,
2007.

[25] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development.
SpringerVerlag, 2004.

[26] Ottmar Beucher. MATLAB und Simulink (Scientific Computing). Pearson Studium, 08
2006.

[27] Dirk Beyer, Adam J. Chlipala, and Rupak Majumdar. Generating tests from counterexam-
ples. In ICSE ’04: Proceedings of the 26th International Conference on Software Engineering,
pages 326–335, Washington, DC, USA, 2004. IEEE Computer Society.

[28] Dirk Beyer, Thomas Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Invariant
synthesis for combined theories. In Verification, Model Checking, and Abstract Interpretation:
8th International Conference, (VMCAI), volume 4349 of LNCS, pages 378–394, 2007.

[29] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software model
checker blast: Applications to software engineering. International Journal on Software Tools
for Technology Transfer, 9(5):505–525, 2007.

[30] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Path in-
variants. In PLDI ’07: Proceedings of the ACM SIGPLAN 2007 Conference on Programming
language design and implementation, pages 300–309, 2007.

170

[31] Dirk Beyer, Tom Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Path invariants.
In PLDI ’07: Proceedings of the ACM SIGPLAN 2007 Conference on Programming language
design and implementation, 2007.

[32] Nikolaj Bjørner and Joe Hendrix. Linear functional fixed-points. In CAV ’09: Proceedings
of the 21st International Conference on Computer Aided Verification, pages 124–139, Berlin,
Heidelberg, 2009. Springer-Verlag.

[33] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In PLDI ’03: Proceedings of
the 2003 ACM SIGPLAN conference on Programming language design and implementation,
pages 196–207, San Diego, California, USA, June 2003. ACM Press.

[34] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software. In The Essence of
Computation: Complexity, Analysis, Transformation., LNCS 2566, pages 85–108. October
2002.

[35] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Specify,
compile, run: Hardware from PSL. In International Workshop on Compiler Optimization
Meets Compiler Verification (COCV), pages 3–16, 2007.

[36] Roderick Bloem, Krishnendu Chatterjee, Thomas Henzinger, and Barbara Jobstmann. Bet-
ter quality in synthesis through quantitative objectives. In Springer, editor, Computer Aided
Verification (CAV), pages 140–156, 2009.

[37] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin
Weiglhofer. Interactive presentation: Automatic hardware synthesis from specifications: a
case study. In DATE, pages 1188–1193, 2007.

[38] Roderick Bloem, Karin Greimel, Thomas Henzinger, and Barbara Jobstmann. Synthesizing
robust systems. In Conference on Formal Methods in Computer Aided Design (FMCAD’09),
pages 85–92, 2009.

[39] Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung, Shaon
Barman, and Casey Rodarmor. Programming with angelic nondeterminism. In POPL ’10:
Proceedings of the 37th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 339–352, 2010.

[40] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter Rossum,
Stephan Schulz, and Roberto Sebastiani. Mathsat: Tight integration of sat and mathematical
decision procedures. Journal of Automated Reasoning, 35(1-3):265–293, 2005.

[41] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A. Junttila, Silvio
Ranise, Peter van Rossum, and Roberto Sebastiani. Efficient satisfiability modulo theories
via delayed theory combination. In CAV’05: Computer Aided Verification, pages 335–349,
2005.

[42] Aaron R. Bradley and Zohar Manna. Verification constraint problems with strengthening.
In ICTAC, pages 35–49, 2006.

[43] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability. In
Kousha Etessami and Sriram K. Rajamani, editors, Proc. 17th Intl. Conference on Computer
Aided Verification (CAV), volume 3576 of LNCS 3576. Springer Verlag, July 2005.

[44] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In Proc.
32nd International Colloquium on Automata, Languages and Programming, volume 3580 of
LNCS 3580, pages 1349–1361. Springer Verlag, 2005.

171

[45] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What ’s decidable about arrays?
In Verification, Model Checking, and Abstract Interpretation: 7th International Conference,
(VMCAI), volume 3855, pages 427–442, Charleston, SC, January 2006. Springer Verlag.

[46] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-vectors and
arrays. pages 174–177. 2009.

[47] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzen, Alberto Griggio, and Roberto
Sebastiani. Delayed theory combination vs. nelson-oppen for satisfiability modulo theories:
a comparative analysis. Annals of Mathematics and Artificial Intelligence, 55(1-2):63–99,
2009.

[48] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., 35(8):677–691, 1986.

[49] Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with transitivity constraints.
ACM Transactions on Computational Logic, 3(4):604–627, 2002.

[50] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In LICS, pages 428–439, 1990.

[51] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of jml tools and applications.
International Journal on Software Tools for Technolology Transfer, 7(3):212–232, 2005.

[52] Cristian Cadar, Paul Twohey, Vijay Ganesh, and Dawson Engler. EXE: A system for auto-
matically generating inputs of death using symbolic execution. In In Proceedings of the 13th
ACM Conference on Computer and Communications Security (CCS), 2006.

[53] Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: a powerful approach
to weakest preconditions. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation, pages 363–374, 2009.

[54] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A reach-
ability predicate for analyzing low-level software. In TACAS’07: Tools and Algorithms for
the Construction and Analysis of Systems, pages 19–33, 2007.

[55] Wei Chen. A formal approach to program inversion. In CSC ’90: Proceedings of the 1990
ACM annual conference on Cooperation, pages 398–403. ACM, 1990.

[56] Alonzo Church. Logic, arithmetic, and automata. In Proc. Int. Congr. Math, pages 23–35.
Inst. Mittag-Leffler, Djursholm, Sweden, 1963.

[57] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Language Systems, 8(2):244–263, 1986.

[58] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal of the
ACM, 50(5):752–794, 2003.

[59] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, pages 52–71. Springer-Verlag,
1982.

[60] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV’00: Computer Aided Verification,
pages 154–169, 2000.

172

[61] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional model check-
ing. In LICS, pages 353–362, 1989.

[62] Michael Colón. Schema-guided synthesis of imperative programs by constraint solving. In
LOPSTR, pages 166–181, 2004.

[63] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant generation
using non-linear constraint solving. In CAV’03: Computer Aided Verification, pages 420–432,
2003.

[64] Michael Colón and Henny Sipma. Practical methods for proving program termination. In
CAV ’02: Proceedings of the 14th International Conference on Computer Aided Verification,
pages 442–454, London, UK, 2002. Springer-Verlag.

[65] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Unifying type checking
and property checking for low-level code. In POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 302–
314, New York, NY, USA, 2009. ACM.

[66] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Nec-
ula. Dependent types for low-level programming. In ESOP ’07: European Symposium on
Programming, pages 520–535, 2007.

[67] R L Constable. Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[68] Byron Cook. Automatically proving program termination. In CAV’07: Computer Aided
Verification, page 1, 2007.

[69] Byron Cook, Ashutosh Gupta, Stephen Magill, Andrey Rybalchenko, Jiŕı Simsa, Satnam
Singh, and Viktor Vafeiadis. Finding heap-bounds for hardware synthesis. In FMCAD,
pages 205–212, 2009.

[70] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems
code. In PLDI ’06: Proceedings of the ACM SIGPLAN 2006 Conference on Programming
language design and implementation, pages 415–426, 2006.

[71] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In
STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 1–6, New York, NY, USA, 1987. ACM.

[72] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

[73] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL’77: Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

[74] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In E.J. Neuhold, editor, IFIP Conf. on Formal Description of Programming Concepts, St-
Andrews, N.B., CA, pages 237–277. North-Holland, 1977.

[75] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE analyzer. In Proc. of the European Symposium on Programming (ESOP’05), vol-
ume 3444 of Lecture Notes in Computer Science, pages 21–30, Edinburgh, Scotland, April
2005. Springer.

173

[76] Patrick Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In Verification, Model Checking, and
Abstract Interpretation: 6th International Conference, (VMCAI), pages 1–24, 2005.

[77] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 269–282, New York, NY, USA, 1979. ACM.

[78] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2&3):103–179, 1992.

[79] Philippe Coussy and Adam Morawiec. High-Level Synthesis: from Algorithm to Digital
Circuit. Springer Publishing Company, Incorporated, 2008.

[80] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby,
Brad A. Myers, and Alan Turransky, editors. Watch what I do: programming by demonstra-
tion. MIT Press, Cambridge, MA, USA, 1993.

[81] Satyaki Das and David L. Dill. Successive approximation of abstract transition relations. In
LICS ’01: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science,
page 51, Washington, DC, USA, 2001. IEEE Computer Society.

[82] Satyaki Das and David L. Dill. Counter-example based predicate discovery in predicate
abstraction. In FMCAD, pages 19–32, 2002.

[83] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstraction. In
CAV ’99: Proceedings of the 11th International Conference on Computer Aided Verification,
pages 160–171, London, UK, 1999. Springer-Verlag.

[84] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

[85] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[86] Leonardo de Moura and Nikolaj Bjørner. Efficient E-matching for smt solvers. In CADE-21,
pages 183–198, 2007.

[87] Leonardo de Moura and Nikolaj Bjørner. Z3, 2008. http://research.microsoft.com/

projects/Z3/.

[88] Leonardo Mendonça de Moura and Nikolaj Bjørner. Generalized, efficient array decision
procedures. In FMCAD, pages 45–52, 2009.

[89] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18(8):453–457, 1975.

[90] Edsger W. Dijkstra. Program inversion. In Program Construction, http://www.cs.utexas.
edu/~EWD/ewd06xx/EWD671.PDF, pages 54–57, London, UK, 1979. Springer-Verlag.

[91] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics. Texts
and Monographs in CS. Springer-Verlag, 1990.

[92] Edsger Wybe Dijkstra. A constructive approach to the program of program correctness. BIT
Numerical Mathematics, 8(3):174–186, Sep 1968.

[93] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1976.

[94] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-sensitive
analysis. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, pages 270–280, New York, NY, USA, 2008. ACM.

174

[95] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee reason-
ing. In ESOP ’09: Proceedings of the 18th European Symposium on Programming Languages
and Systems, pages 363–377, Berlin, Heidelberg, 2009. Springer-Verlag.

[96] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant
strength. In Gilles Barthe and Manuel V. Hermenegildo, editors, Verification, Model Check-
ing, and Abstract Interpretation: 11th International Conference, (VMCAI), volume 5944 of
Lecture Notes in Computer Science, pages 129–145. Springer, 2010.

[97] Joe W. Duran. Heuristics for program synthesis using loop invariants. In ACM ’78: Pro-
ceedings of the 1978 annual conference, pages 891–900, New York, NY, USA, 1978. ACM.

[98] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Technical report, SRI,
2006.

[99] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

[100] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceedings of SAT 2004,
pages 502–518. Springer Verlag, 2004.

[101] Thomas Emerson and Mark H. Burstein. Development of a constraint-based airlift scheduler
by program synthesis from formal specifications. In ASE ’99: Proceedings of the 14th IEEE
international conference on Automated software engineering, page 267, Washington, DC,
USA, 1999. IEEE Computer Society.

[102] David Eppstein. A heuristic approach to program inversion. In IJCAI’85: Proceedings
of the 9th international joint conference on Artificial intelligence, pages 219–221. Morgan
Kaufmann Publishers Inc., 1985.

[103] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Transactions on
Software Engineering, 27(2):99–123, February 2001.

[104] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1–3):35–45, December 2007.

[105] A. E. Eichenberger et. al. Using advanced compiler technology to exploit the performance
of the cell broadband engine architecture. IBM Systems Journal, 45(1), 2006.

[106] J. Farkas. Uber die theorie der einfachen ungleichungen. Journal fur die Reine und Ange-
wandte Mathematik, 124:1–27, 1902.

[107] Xinyu Feng. Local rely-guarantee reasoning. In POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 315–
327, New York, NY, USA, 2009. ACM.

[108] Jean-Christophe Filliâtre. Using smt solvers for deductive verification of c and java programs.
In SMT’08.

[109] Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus platform for
deductive program verification. In Computer Aided Verification, Lecture Notes in Computer
Science, chapter 21, pages 173–177. 2007.

[110] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors. Aspect-Oriented
Software Development. Addison-Wesley, Boston, 2005.

[111] Bernd Fischer and Johann Schumann. Autobayes: a system for generating data analysis
programs from statistical models. Journal of Functional Programming, 13(3):483–508, 2003.

175

[112] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for java. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design and implementation, pages
234–245, New York, NY, USA, 2002. ACM.

[113] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification. In
POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 191–202, New York, NY, USA, 2002. ACM.

[114] P. Flener, L. Popelinsky, and O. Stepankova. Ilp and automatic programming: towards three
approaches. In Proc. of ILP-94, pages 351–364, 1994.

[115] Pierre Flener, Kung-Kiu Lau, Mario Ornaghi, and Julian Richardson. An abstract for-
malization of correct schemas for program synthesis. Journal of Symbolic Computation,
30(1):93–127, 2000.

[116] Pierre Flener and Serap Yilmaz. Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. Journal of Logic Programming, 41(2-3):141–195, 1999.

[117] Tim Freeman and Frank Pfenning. Refinement types for ml. In PLDI ’91: Proceedings of
the ACM SIGPLAN 1991 conference on Programming language design and implementation,
pages 268–277, New York, NY, USA, 1991. ACM.

[118] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Dpll(t): Fast decision procedures. In CAV’04: Computer Aided Verification, pages 175–188,
2004.

[119] Roberto Giacobazzi and Francesco Ranzato. Optimal domains for disjunctive abstract inter-
pretation. Science of Computer Programming, 32(1-3):177–210, 1998.

[120] Robert Glück and Masahiko Kawabe. A method for automatic program inversion based on
LR(0) parsing. Fundamenta Informaticae, 66(4):367–395, 2005.

[121] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random
testing. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223, New York, NY, USA, 2005. ACM.

[122] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random
testing. SIGPLAN Notices, 40(6):213–223, 2005.

[123] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz
testing. In NDSS, 2008.

[124] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In
Handbook of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence,
pages 89–134. Elsevier, 2008.

[125] Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in linear
relation analysis. In Kwangkeun Yi, editor, 13th International Static Analysis Symposium,
SAS’06, LNCS 4134. LNCS 4134, Springer Verlag, August 2006.

[126] Denis Gopan and Thomas W. Reps. Lookahead widening. In CAV’06: Computer Aided
Verification, pages 452–466, 2006.

[127] Denis Gopan and Thomas W. Reps. Guided static analysis. In SAS ’07: Proceedings of the
14th International Symposium on Static Analysis, pages 349–365, 2007.

[128] Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics. In
STACS ’97: Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer
Science, pages 249–260, London, UK, 1997. Springer-Verlag.

176

[129] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In Com-
puter Aided Verification, pages 72–83, 1997.

[130] Cordell Green. Application of theorem proving to problem solving. In IJCAI’69: Proceedings
of the 1st international joint conference on Artificial intelligence, pages 219–239, 1969.

[131] David Gries. The Science of Programming. Springer-Verlag New York, Inc., 1987.

[132] A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean programs with an application
to C. In T. Ball and R. B. Jones, editors, 18th Conference on Computer Aided Verification
(CAV), volume 4144/2006 of LNCS, pages 358–371, August 2006.

[133] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K. Rajamani.
Automatically refining abstract interpretations. TR-07-23, (TR-07-23), 2007.

[134] Bhargav S. Gulavani and Sriram K. Rajamani. Counterexample driven refinement for ab-
stract interpretation. In TACAS’06: Tools and Algorithms for the Construction and Analysis
of Systems, pages 474–488, 2006.

[135] S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis.
In R. De Nicola, editor, ESOP ’07: European Symposium on Programming, volume 4421 of
LNCS, pages 253–267, 2007.

[136] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and progress invari-
ants for bound analysis. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation, pages 375–385, New York, NY, USA,
2009. ACM.

[137] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Component
based synthesis applied to bitvector circuits. Technical Report MSR-TR-2010-12, Microsoft
Research, 2010.

[138] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters to quantified
logical domains. In POPL ’08: Proceedings of the 35th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 235–246, 2008.

[139] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed: precise and efficient static
estimation of program computational complexity. In POPL ’09: Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
127–139, New York, NY, USA, 2009. ACM.

[140] Sumit Gulwani and George C. Necula. Discovering affine equalities using random inter-
pretation. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 74–84, New York, NY, USA, 2003. ACM.

[141] Sumit Gulwani and George C. Necula. Global value numbering using random interpretation.
In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 342–352, New York, NY, USA, 2004. ACM.

[142] Sumit Gulwani and George C. Necula. Precise interprocedural analysis using random inter-
pretation. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 324–337, New York, NY, USA, 2005. ACM.

[143] Ashutosh Gupta, Tom Henzinger, Rupak Majumdar, Andrey Rybalchenko, and Ru-Gang Xu.
Proving non-termination. In POPL ’08: Proceedings of the 35th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2008.

[144] Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs. In
TACAS ’09: Proceedings of the 15th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 262–276, Berlin, Heidelberg, 2009. Springer-
Verlag.

177

[145] Ashutosh Gupta and Andrey Rybalchenko. Invgen: An efficient invariant generator. In CAV
’09: Proceedings of the 21st International Conference on Computer Aided Verification, pages
634–640, Berlin, Heidelberg, 2009. Springer-Verlag.

[146] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple pro-
grams. In PLDI ’08: Proceedings of the ACM SIGPLAN 2008 Conference on Programming
language design and implementation, pages 339–348, 2008.

[147] Matthew S. Hecht and Jeffrey D. Ullman. Flow graph reducibility. In STOC ’72: Proceedings
of the fourth annual ACM symposium on Theory of computing, pages 238–250, New York,
NY, USA, 1972. ACM.

[148] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Ab-
stractions from proofs. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 232–244, New York, NY, USA,
2004. ACM.

[149] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy abstrac-
tion. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 58–70, New York, NY, USA, 2002. ACM.

[150] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[151] Ying Hu, Clark Barrett, and Benjamin Goldberg. Theory and algorithms for the generation
and validation of speculative loop optimizations. In Proceedings of the 2nd IEEE International
Conference on Software Engineering and Formal Methods (SEFM ’04), pages 281–289. IEEE
Computer Society, September 2004. Beijing, China.

[152] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sagiv, and Greta
Yorsh. The boundary between decidability and undecidability for transitive-closure logics.
In CSL, pages 160–174, 2004.

[153] Susmit Jha, Sumit Gulwani, Sanjit Seshia, and Ashish Tiwari. Oracle-guided component-
based program synthesis. In 32nd International Conference on Software Engineering, 2010.

[154] Susmit Jha, Sumit Gulwani, Sanjit Seshia, and Ashish Tiwari. Synthesizing switching logic
for safety and dwell-time requirements. In 1st International Conference on Cyber-physical
Systems, 2010.

[155] Ranjit Jhala and Ken McMillan. Array abstractions from proofs. In CAV’07: Computer
Aided Verification, 2007.

[156] B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing faults. Journal
of Computer and System Sciences (JCSS), –, 2009.

[157] Barbara Jobstmann and Roderick Bloem. Optimizations for ltl synthesis. In FMCAD ’06:
Proceedings of the Formal Methods in Computer Aided Design, pages 117–124. IEEE Com-
puter Society, 2006.

[158] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem. Anzu: A tool
for property synthesis. In Computer Aided Verification, pages 258–262. 2007.

[159] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program repair as a game.
In CAV’05: Computer Aided Verification, pages 226–238, 2005.

[160] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages
321–332, 1983.

178

[161] Deepak Kapur. Automatically generating loop invariants using quantifier elimination. In
Deduction and Applications, 2005.

[162] Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. Type-based data structure verification.
In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, pages 304–315, New York, NY, USA, 2009. ACM.

[163] Richard A. Kelsey. A correspondence between continuation passing style and static single
assignment form. In IR ’95: Papers from the 1995 ACM SIGPLAN workshop on Intermediate
representations, pages 13–22, New York, NY, USA, 1995. ACM.

[164] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP, pages
220–242, 1997.

[165] Gary A. Kildall. A unified approach to global program optimization. In POPL ’73: Pro-
ceedings of the 1st ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 194–206, 1973.

[166] James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[167] Emanuel Kitzelmann and Ute Schmid. An explanation based generalization approach to
inductive synthesis of functional programs. In Emanuel Kitzelmann, Roland Olsson, and
Ute Schmid, editors, ICML-2005 Workshop on Approaches and Applications of Inductive
Programming, pages 15–27, 2005.

[168] Emanuel Kitzelmann and Ute Schmid. Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research, 7:429–454,
2006.

[169] Kenneth W. Knowles and Cormac Flanagan. Type reconstruction for general refinement
types. In ESOP ’07: European Symposium on Programming, pages 505–519, 2007.

[170] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point of View.
Springer Publishing Company, Incorporated, 2008.

[171] Ramayya Kumar, Christian Blumenröhr, Dirk Eisenbiegler, and Detlef Schmid. Formal
synthesis in circuit design - a classification and survey. In FMCAD ’96: Proceedings of
the First International Conference on Formal Methods in Computer-Aided Design, pages
294–309, London, UK, 1996. Springer-Verlag.

[172] Viktor Kuncak, Mikael Mayer, Ruzica Piskac, and Philippe Suter. Complete functional
synthesis. In PLDI ’10: Proceedings of the ACM SIGPLAN 2010 Conference on Programming
language design and implementation, 2010.

[173] Shuvendu Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verification
using smt solvers. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 171–182, 2008.

[174] Shuvendu K. Lahiri, Thomas Ball, and Byron Cook. Predicate abstraction via symbolic
decision procedures. Logical Methods in Computer Science, 3(2), 2007.

[175] Shuvendu K. Lahiri and Randal E. Bryant. Constructing quantified invariants via predicate
abstraction. Verification, Model Checking, and Abstract Interpretation, pages 331–353, 2004.

[176] Shuvendu K. Lahiri and Randal E. Bryant. Indexed predicate discovery for unbounded
system verification. In CAV’04: Computer Aided Verification, pages 135–147, 2004.

179

[177] Shuvendu K. Lahiri and Randal E. Bryant. Predicate abstraction with indexed predicates.
ACM Transactions on Computational Logic, 9(1):4, 2007.

[178] Shuvendu K. Lahiri, Randal E. Bryant, and Byron Cook. A symbolic approach to predicate
abstraction. In CAV’03: Computer Aided Verification, pages 141–153, 2003.

[179] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked lists. In
POPL ’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 115–126, New York, NY, USA, 2006. ACM.

[180] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. Static and precise detection of
concurrency errors in systems code using smt solvers. In CAV’09: Computer Aided Verifica-
tion, pages 509–524, 2009.

[181] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978.

[182] Jean B. Lasserre. A discrete farkas lemma. Discrete Optimization, 1(1):67–75, 2004.

[183] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR ’10: Proceedings of the 17th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, 2010.

[184] K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In TACAS’10: Tools and Algorithms for the Construction and
Analysis of Systems, pages 312–327, 2010.

[185] Rustan Leino and Francesco Logozzo. Using widenings to infer loop invariants inside an smt
solver. In WING: Workshop on Invariant Generation, 2007.

[186] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Mooly Sagiv, Siddharth Srivastava, and
Greta Yorsh. Simulating reachability using first-order logic with applications to verification
of linked data structures. Logical Methods in Computer Science, 5(2), 2009.

[187] Leonid Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer Science.
An EATCS Series). SpringerVerlag, 2004.

[188] H. Lieberman. Your Wish Is My Command: Programming by Example. Morgan Kaufmann,
2001.

[189] Rupak Majumdar and Ru-Gang Xu. Directed test generation using symbolic grammars.
In ESEC-FSE companion ’07: The 6th Joint Meeting on European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software engineering,
pages 553–556, New York, NY, USA, 2007. ACM.

[190] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, ’74.

[191] Z. Manna and R. Waldinger. Synthesis: Dreams =⇒ programs. IEEE Transactions of
Software Engineering, 5(4):294–328, 1979.

[192] Zohar Manna. Mathematical Theory of Computation. Dover Publications, Incorporated,
2003.

[193] Zohar Manna and John McCarthy. Properties of programs and partial function logic. Ma-
chine Intelligence, 5, 1970.

[194] Zohar Manna and Amir Pnueli. Formalization of properties of functional programs. Journal
of the ACM, 17(3):555–569, 1970.

[195] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. ACM
Transactions on Programming Language Systems, 2(1):90–121, 1980.

180

[196] Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. Communi-
cations of the ACM, 14(3):151–165, 1971.

[197] Maria-Cristina Marinescu and Martin Rinard. High-level specification and efficient imple-
mentation of pipelined circuits. In ASP-DAC ’01: Proceedings of the 2001 Asia and South
Pacific Design Automation Conference, pages 655–661, New York, NY, USA, 2001. ACM.

[198] Mikael Mayer, Philippe Suter, Ruzica Piskac, and Viktor Kuncak. Comfusy: Complete
functional synthesis (tool presentation). In CAV’10: Computer Aided Verification, 2010.

[199] John McCarthy and James Painter. Correctness of a compiler for arithmetic expressions.
In Proceedings of Symposia in Applied Mathematicas, pages 33–41. American Mathematical
Society, 1967.

[200] James McDonald and John Anton. SPECWARE - producing software correct by construc-
tion. Technical Report KES.U.01.3., 2001.

[201] K. L. Mcmillan. In Computer Aided Verification, Lecture Notes in Computer Science, pages
1–13. Springer, 2003.

[202] Scott McPeak and George C. Necula. Data structure specifications via local equality axioms.
In CAV’05: Computer Aided Verification, pages 476–490, 2005.

[203] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–
100, 2006.

[204] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient sat solver. In DAC ’01: Proceedings of the 38th conference on
Design automation, pages 530–535, New York, NY, USA, 2001. ACM.

[205] Markus Müller-Olm and Helmut Seidl. Precise interprocedural analysis through linear alge-
bra. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 330–341, 2004.

[206] Markus Müller-Olm, Helmut Seidl, and Bernhard Steffen. Interprocedural analysis (almost)
for free. In Technical Report 790, Fachbereich Informatik, Universitt Dortmund, 2004.

[207] Markus Müller-Olm, Helmut Seidl, and Bernhard Steffen. Interprocedural herbrand equali-
ties. In ESOP ’05: European Symposium on Programming, pages 31–45, 2005.

[208] George C. Necula. Proof-carrying code. In Conference Record of POPL˜’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 106–119,
Paris, France, jan 1997.

[209] Greg Nelson. Verifying reachability invariants of linked structures. In POPL ’83: Proceedings
of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 38–47, New York, NY, USA, 1983. ACM.

[210] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel program-
ming with cuda. Queue, 6(2):40–53, 2008.

[211] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[212] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat modulo the-
ories: From an abstract davis–putnam–logemann–loveland procedure to dpll(t). Journal of
the ACM, 53(6):937–977, 2006.

[213] Gordon S. Novak, Jr. Software reuse by specialization of generic procedures through views.
IEEE Transactions on Software Engineering, 23(7):401–417, 1997.

181

[214] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E.
Lefohn, and Timothy J. Purcell. A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[215] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA,
2002.

[216] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthesize. In SFCS
’90: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, pages
746–757 vol.2, Washington, DC, USA, 1990. IEEE Computer Society.

[217] A. Pnueli. In transition from global to modular temporal reasoning about programs. Logics
and models of concurrent systems, pages 123–144, 1985.

[218] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 179–190, New York, NY, USA, 1989. ACM.

[219] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
ICALP ’89: Proceedings of the 16th International Colloquium on Automata, Languages and
Programming, pages 652–671, London, UK, 1989. Springer-Verlag.

[220] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of lin-
ear ranking functions. In Verification, Model Checking, and Abstract Interpretation: 5th

International Conference, (VMCAI), pages 239–251, 2004.

[221] Andreas Podelski and Thomas Wies. Boolean heaps. In SAS ’05: Proceedings of the 12th
International Symposium on Static Analysis, 2005.

[222] Franois Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489.
MIT Press, 2005.

[223] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in SAT-based
formal verification. STTT, 7(2):156–173, 2005.

[224] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. LU
Decomposition and Its Applications, chapter 2.3, pages 34–42. Cambridge University Press,
New York, NY, USA, 1993.

[225] Zvonimir Rakamaric, Roberto Bruttomesso, Alan J. Hu, and Alessandro Cimatti. Verifying
heap-manipulating programs in an smt framework. In ATVA, pages 237–252, 2007.

[226] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM Journal of Control Optimization, 25(1):206–230, 1987.

[227] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow anal-
ysis via graph reachability. In POPL ’95: Proceedings of the 22th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 49–61, 1995.

[228] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. Symbolic implementation of the best
transformer. In Verification, Model Checking, and Abstract Interpretation: 5th International
Conference, (VMCAI), pages 252–266, 2004.

[229] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and William S.
Beebee, Jr. Enhancing server availability and security through failure-oblivious computing.
In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems Design
& Implementation, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

182

[230] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In PLDI ’08: Pro-
ceedings of the 2008 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 159–169, New York, NY, USA, 2008. ACM.

[231] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant
computations. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 12–27, New York, NY, USA, 1988. ACM.

[232] Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. Precise interprocedural dataflow analy-
sis with applications to constant propagation. Theoretical Computer Science, 167(1&2):131–
170, 1996.

[233] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta. Static anal-
ysis in disjunctive numerical domains. In SAS ’06: Proceedings of the 13th International
Symposium on Static Analysis, pages 3–17, 2006.

[234] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Non-linear loop invariant gen-
eration using gröbner bases. In POPL ’04: Proceedings of the 31th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 318–329, 2004.

[235] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Constraint-based linear-
relations analysis. In SAS ’04: Proceedings of the 11th International Symposium on Static
Analysis, pages 53–68, 2004.

[236] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis of linear
systems using mathematical programming. In Verification, Model Checking, and Abstract
Interpretation: 6th International Conference, (VMCAI), pages 25–41, 2005.

[237] Ute Schmid and Fritz Wysotzki. Induction of recursive program schemes. In ECML ’98:
Proceedings of the 10th European Conference on Machine Learning, pages 214–225, London,
UK, 1998. Springer-Verlag.

[238] A. Schrijver. Theory of Linear and Integer Programming. 1986.

[239] Helmut Seidl, Andrea Flexeder, and Michael Petter. Interprocedurally analysing linear in-
equality relations. In ESOP ’07: European Symposium on Programming, pages 284–299,
2007.

[240] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In
ESEC/FSE-13: Proceedings of the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 263–272, New York, NY, USA, 2005. ACM.

[241] Nikhil Sethi and Clark Barrett. CASCADE: C assertion checker and deductive engine. In
Thomas Ball and Robert B. Jones, editors, Proceedings of the 18th International Conference
on Computer Aided Verification (CAV ’06), volume 4144 of Lecture Notes in Computer
Science, pages 166–169. Springer-Verlag, August 2006. Seattle, Washington.

[242] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis, chap-
ter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[243] Richard Sharp. Higher-Level Hardware Synthesis, volume 2963 of Lecture Notes in Computer
Science. Springer, 2004.

[244] D. R. Smith. KIDS: A semiautomatic program development system. IEEE Transactions on
Software Engineering, 16(9):1024–1043, 1990.

[245] Douglas R. Smith. Designware: software development by refinement. High integrity software,
pages 3–21, 2001.

183

[246] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and
Sanjit Seshia. Sketching stencils. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation, pages 167–178, New York,
NY, USA, 2007. ACM.

[247] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concur-
rent data structures. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, pages 136–148, New York, NY, USA,
2008. ACM.

[248] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bod́ık, and Kemal Ebcioğlu. Prog. by
sketching for bit-stream. prgs. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation, pages 281–294, New York, NY,
USA, 2005. ACM.

[249] Saurabh Srivastava. Satisfiability-based Program Reasoning and Program Synthesis. PhD
thesis, University of Maryland, College Park, 2010. http://hdl.handle.net/1903/10416.

[250] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verification to pro-
gram synthesis. In POPL ’10: Proceedings of the 37th ACM SIGACT-SIGPLAN conference
on Principles of Programming Languages, 2010.

[251] Khronos Group Std. The OpenCL specification, version 1.0, online. http://www.khronos.

org/registry/cl/specs/opencl-1.0.33.pdf, 2009.

[252] Mark E. Stickel, Richard J. Waldinger, Michael R. Lowry, Thomas Pressburger, and Ian
Underwood. Deductive composition of astronomical software from subroutine libraries. In
CADE-12: Proceedings of the 12th International Conference on Automated Deduction, pages
341–355, London, UK, 1994. Springer-Verlag.

[253] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy Levitt. A decision procedure
for an extensional theory of arrays. In LICS ’01: Proceedings of the 16th Annual IEEE
Symposium on Logic in Computer Science, page 29, Washington, DC, USA, 2001. IEEE
Computer Society.

[254] Phillip D. Summers. A methodology for lisp program construction from examples. Journal
of the ACM, 24(1):161–175, 1977.

[255] Tachio Terauchi. Dependent types from counterexamples. In POPL ’10: Proceedings of the
37th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 119–130, New York, NY, USA, 2010. ACM.

[256] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language for
streaming applications. In CC ’02: Proceedings of the 11th International Conference on
Compiler Construction, pages 179–196, London, UK, 2002. Springer-Verlag.

[257] Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, pages 635–655, 2008.

[258] Nikolai Tillmann and Jonathan de Halleux. Pex: White box test generation for .NET. In
Tests and Proofs, volume 4966 of Lecture Notes in Computer Science, chapter 10, pages
134–153. Springer Berlin Heidelberg, 2008.

[259] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and separation
logic. In CONCUR, pages 256–271, 2007.

[260] Moshe Y. Vardi. From verification to synthesis. In Natarajan Shankar and Jim Woodcock,
editors, VSTTE, volume 5295 of Lecture Notes in Computer Science, page 2. Springer, 2008.

184

[261] Martin Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided synthesis of synchroniza-
tion. In POPL ’10: Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 327–338, New York, NY, USA, 2010. ACM.

[262] Martin T. Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects. In
PLDI ’08: Proceedings of the ACM SIGPLAN 2008 Conference on Programming language
design and implementation, pages 125–135, 2008.

[263] Martin T. Vechev, Eran Yahav, and David F. Bacon. Correctness-preserving derivation of
concurrent garbage collection algorithms. In PLDI ’06: Proceedings of the ACM SIGPLAN
2007 Conference on Programming language design and implementation, pages 341–353, 2006.

[264] Martin T. Vechev, Eran Yahav, David F. Bacon, and Noam Rinetzky. CGCExplorer: a
semi-automated search procedure for provably correct concurrent collectors. In PLDI ’07:
Proceedings of the ACM SIGPLAN 2007 Conference on Programming language design and
implementation, pages 456–467, 2007.

[265] Richard J. Waldinger. Whatever happened to deductive question answering? In LPAR ’07:
Proceedings of the International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, pages 15–16, 2007.

[266] Richard J. Waldinger and Richard C. T. Lee. Prow: A step toward automatic program
writing. In IJCAI ’69: International Joint Conference on Artificial Intelligence, pages 241–
252, 1969.

[267] Chao Wang, Zijiang Yang, Aarti Gupta, and Franjo Ivancic. Using counterexamples for
improving the precision of reachability computation with polyhedra. In CAV ’07: Proceedings
of 19th the Intl. Conference on Computer Aided Verification, pages 352–365, 2007.

[268] T. A. Welch. A technique for high-performance data compression. Computer, 17(6):8–19,
1984.

[269] Glynn Winskel. The formal semantics of programming languages: an introduction. MIT
Press, Cambridge, MA, USA, 1993.

[270] Nicholas Wirth. Systematic Programming: An Introduction. Prentice Hall PTR, 1973.

[271] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In POPL ’99:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 214–227, New York, NY, USA, 1999. ACM.

[272] Yichen Xie and Alexander Aiken. Saturn: A SAT-based tool for bug detection. In CAV’05:
Computer Aided Verification, pages 139–143, 2005.

[273] Daniel M. Yellin. Attribute grammar inversion and source-to-source translation. Springer-
Verlag New York, Inc., 1988.

[274] Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure
summaries. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 221–234, New York, NY, USA, 2008.
ACM.

[275] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(5):337–343, 1977.

185

